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Abstract The system of balance laws of mass, momentum and energy for a vis-
cous, heat-conductive, one-dimensional real gas is considered. The existence of globally
defined smooth solution to an initial boundary value problem is established. Because
of the boundary conditions’ effect, vacuum will be developped as time tends to infinity.
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1. Introduction

In this paper, we consider the plobal existence and the asymptotic behavior of
smooth solutions to initial boundary value problems in the dynamics of a one-dimensional,
viscous, heat-conductive real gas. The referential (Lagrangian) form of the conservation

laws of mass, momentum and energy is

Uty — U = ()

imo sl (1.1)
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while the second law of thermodynamics is expressed by Clausius-Duhem inequality

m+(5), 20 (1.2)

Here u, v, o, 2, ?;r._ﬂ and g denote the specific volume, the velocity, the stress, the specific
internal energy, the specific entropy, the temperature and the heat flux, respectively.
Note that u, e and & may only take positive values.
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We shall consider the system (1.1) in the region {0 < x < 1,¢ > 0} under the initial
conditions and the boundary conditions:

w(z,0) = uglx) =0, wu(x,0)=wlz), &z 0)==06(z)> (1.3)
gl thi=igliltv=0, =10 (1.4)
o0, t) = a(0,£), ol tl=0, =0 (1.5)

The condition (1.4) implies that the ends are thermally insulated. (1.5) means that
one end of the gas is put in a vacuum while the other is connected to some sort of dash
pot. Here we consider the Newtonial fduid:

Ghid ) e )y *"“(: i) (1.6)
satisfying the Fourier law of the heat flux
oo, 0,0) = -5y, (1.7
where the internal energy e and the pressure p are interrelated by
eq(u, ) = —p(u,8) + Opa(u, §) (1.8)

in order to comply with (1.2). This model can be found in [1] and [2].

We assume that e,p, o and k are twice continuously differentiable on 0 < uw < oc,
and 0 < # < oc. As regards growth with respect to the temperature we require that
there are exponents r € [0,1], s > 1 + r and positive constants w, p1, kg, and for any
u = 0 there are positive constant N(w), ps(u), and k() such that foru > wand 8 = 0,
the following conditions hold:

0<e(u,0), v(l+6)<ep(u,d) < Nu)(l+a") (1.9)
I+ (1=08+0"") <pu<palu)(l +(1=DF+67T), l=00rl (1.10)
Py <0 (1.11)
pul € N@)(1+677), [pg] < N{u)(1+6) (1.12)
ko(l +0%) < k(u,0) < ki(u)(1 + 6°) (1.13)
|Few (10, O)| + [ (20, )| < By (m)(1 + 67) (1.14)

The above growth conditions are motivated by the facts in [1] and [2], where it i3
pointed out that e grows as 8'*" with r = 0.5 and k increases like #° with s € 4,5, 5.5].
Note that for an ideal gas, » =0, and [ = 0, where
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