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Abstract A boundary value problem to a fourth order nonlinear degenerate para-
holie equation arising in modeling oil flm spreading over a solid surface is studied in
the present paper. Basing on the consideration of physical phenomenon _{lcscrihfrd by
the original model, the authors forcus mainly on the case of two-dimensional space.
The existence of nonnegative and radial solutions is established [or nonnegative initial
datum.
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1. Introduction

In the present paper, we study the partial differential equation
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with the following initial and boundary value conditions
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where f(n) is a nonnegative function and B the unit ball in the plane region.

The equation (1.1) arises in modeling the motion of oil film spreading over a solid
surface. Many anthors have studied the equation (1.1) for space dimension 1 (See, for
instance, the survey paper [1] and the references therein). F. Bernis and A. Friedman [2]
proved the existence of weak solutions to the problem and studied some other properties
of the solutions such as the nonnegativity of the solutions with nonnegative initial data
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and the increasing property of the supporting set of the solutions. There are also S0INe
other works relating to the above problem, see [3-5], [6~10] and the references therein
for details.

Notice that the actual model for the motion of oil film spreading over a solid surface
occurs in 2-dimensional space. To deseribe the motion, we should consider the problem
in higher dimensional spaces.

For simplicity, we study the radial solution of the problem (1.1)-{1.3). We will
study the problem in space dimension 2 because of its physical background. It is easy
to verify that a radial solution of the problem satisfies
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One may notice that the main difference of the 2-D problem from the 1-D problem
1s that the equation is degenerate at r = 0 and hence the arguments for 1-D problem
can not be applied directly. ' We will put our attention on overcoming the difficulty
arising from the degeneracy at r = 0 and mainly prove the existence of a weak solution
in the sense of the following.

Definition A function u is said to be a weak solution of the problem (1.4) if the
following conditions are fulfilled:

(1) ru(r,t) is continuous in Qr and ws, Uy, Wpp, tUpry and Upppr ar€ all in C{P), where
P=0Qr\({fu=0}U{t=0}U{r=0});

(2) vrf{uurr € L2 P);

(3) For any ¢ € Lip(Qp), ¢ = 0 near t = 0 and t = T, the following integral
equality holds:

ff@ rugudida + ffP r f () Vi dpdidz = 0 (1.5)
(4)
u(z,0) = ug(z), =e][0,1] (1.6)
rur(-t) = ugr, strongly in L2(1) as t — 0 (1.7)
el

u satisfies the lateral boundary value condition where u 3 0. (1.8}




