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Abstract We prove partial regularity for minimizers of degenerate variational

integrals / Fz,u, Du)dz with obstacles of either the form
Y

ol py = {u € HV@ RN > fi(ud, - ud=1) + fi(z) ae.}

ur

(ii) py = {u € H'™(Q,R") | wi(z) 2 hi(z), ae;i=1,---,N}

The typical mode of variational integrals is given by
/ [ﬂﬂﬁ(iﬂaujbﬁ{f{-‘,ﬂ}ﬂquiﬂmf] I=IrLuf!::n; m > 2
o
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1. Introduction

Let £ be a bounded open set in B®, u = (u!, -, u™) be in general a vector valued

function, &V > 1 and Dy = {Dau?}, a=1, o,y i =1,---, N, stands for the gradient
of u. We deal with variational ntegrals

Flu, 0) = fﬂ F(z,u, Du)dz (1.1)

where the integrand F(z,u,p) grows polynomially like lo|™.
More precisely we assume that

F(z,u,p) = g(z, u,a® (2, u)bg (=, u)pip}) (1.2)
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where (a®®) and (b;;) are symmetric positive definite matrices and satisfies
H.1 For some positive A, A and for all z, u, p we have

Apl™ £ Fz,u,p) < Alp™ (1.3)

where m = 2.
H.2 F(x,u,p) is of class C* with respect to p and

| Fyp(@, ;)| < Culpl™

gy m=X_ g
|ij:{53:'u-~..13} e Fpp[ﬁ‘—::u-rq}l = Gﬂ{lﬂz 1= E‘Ilg} T ~%|p— q|®
for some positive o.
H.3 The integrand F(z,u,p) is elliptic in the sense that

Fos ohiountt0 8 2 [P 1ER, ¥ e RPY (1.4)

H.4 The function |p|"™F(z,u,p) is Holder-continuous in (x,u) uniformly with -
respect to p, i.e.

|F(z,u,p) — F(y,v,p)| < Clp™n(|u], |z — ¢ + Ju—2])

where 5(t, s) = K{¢) min(s%, L) for some 4,0 < é < 1, and L > 0 and where K(t) is an
increasing function. Without loss of generality, we may assume that 7(t, 5) 1s concave
15 5 for fixed f.

H.5 We assume that ¢(z,u,t) is an increasing function in ¢ for each fixed (x,u) €
0= RY.

A particular example of the above functional is given by the p-energy functional
sy 51, = f (0% (2, w)bs; (2, w) Do D] dzz, m > 2 (1.5)
0l

where {a®®) and (b;;) are symmetric positive definite matrices.
We recall that a minimizer for the functional (1.1) is a function w € Loy R
such that
Flu:9) < Flu+ ¢;9)

for all ¢ € Hy™ (0, BRY).
The functional (1.5) denotes the p-energy of maps between two Riemannian mani-
folds which the images lie in a single chart (with p = m). The critical point of (1.5) is

called a p-harmonic map. When m = 2, the partial regularity of minimizing harmonic




