REGULARITY RESULTS FOR MINIMIZERS OF CERTAIN FUNCTIONALS HAVING NONQUADRATIC GROWTH WITH OBSTACLES

Hong Minchun

(Centre for Mathematics and Its Applications, the Australian National University, Canberra, ACT 0200, Australia)

(Received May 2, 1995; revised Sept. 1, 1995)

Abstract We prove partial regularity for minimizers of degenerate variational integrals $\int_{\Omega} F(x, u, Du) dx$ with obstacles of either the form

(i)
$$\mu_f = \{u \in H^{1,m}(\Omega, \mathbb{R}^N) | u^N \ge f_1(u^1, \dots, u^{N-1}) + f_2(x) \text{ a.e.} \}$$

or

(ii)
$$\mu_N = \{ u \in H^{1,m}(\Omega, \mathbb{R}^N) \mid u^i(x) \ge h^i(x), \text{ a.e.; } i = 1, \dots, N \}$$

The typical mode of variational integrals is given by

$$\int_{\Omega} \left[a^{\alpha\beta}(x,u)b_{ij}(x,u)D_{\alpha}u^{i}D_{\beta}u^{i} \right]^{\frac{m}{2}} dx, \quad m \ge 2$$

Key Words Degenerate variational integral; obstacle; partial regularity.
Classification 49N60, 35J50, 35J70.

1. Introduction

Let Ω be a bounded open set in \mathbb{R}^n , $u=(u^1,\cdots,u^N)$ be in general a vector valued function, $N\geq 1$ and $Du=\{D_\alpha u^i\},\ \alpha=1,\cdots,n;\ i=1,\cdots,N,$ stands for the gradient of u. We deal with variational integrals

$$\mathcal{F}(u, \Omega) := \int_{\Omega} F(x, u, Du) dx$$
 (1.1)

where the integrand F(x, u, p) grows polynomially like $|p|^m$.

More precisely we assume that

$$F(x, u, p) = g(x, u, a^{\alpha\beta}(x, u)b_{ij}(x, u)p_{\alpha}^{i}p_{\beta}^{j})$$

$$(1.2)$$

where $(a^{\alpha\beta})$ and (b_{ij}) are symmetric positive definite matrices and satisfies

H.1 For some positive λ , Λ and for all x, u, p we have

$$\lambda |p|^m \le F(x, u, p) \le \Lambda |p|^m \tag{1.3}$$

where $m \geq 2$.

H.2 F(x, u, p) is of class C^2 with respect to p and

$$|F_{pp}(x, u, p)| \le C_1 |p|^{m-2}$$

$$|F_{pp}(x, u, p) - F_{pp}(x, u, q)| \le C_2(|p|^2 + |q|^2)^{\frac{m-2}{2} - \frac{\alpha}{2}}|p - q|^{\alpha}$$

for some positive α .

H.3 The integrand F(x, u, p) is elliptic in the sense that

$$F_{p_{\alpha}^{i}p_{\beta}^{j}(x,u,p)}\xi_{i}^{\alpha}\xi_{j}^{\beta} \ge |p|^{m-2}|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{nN}$$

$$(1.4)$$

H.4 The function $|p|^{-m}F(x,u,p)$ is Hölder-continuous in (x,u) uniformly with respect to p, i.e.

$$|F(x, u, p) - F(y, v, p)| \le C|p|^m \eta(|u|, |x - y| + |u - v|)$$

where $\eta(t,s) = K(t) \min(s^{\delta}, L)$ for some $\delta, 0 < \delta < 1$, and L > 0 and where K(t) is an increasing function. Without loss of generality, we may assume that $\eta(t,s)$ is concave is s for fixed t.

H.5 We assume that g(x, u, t) is an increasing function in t for each fixed $(x, u) \in \Omega \times \mathbb{R}^N$.

A particular example of the above functional is given by the p-energy functional

$$\mathcal{F}(u;\Omega) = \int_{\Omega} \left[a^{\alpha\beta}(x,u)b_{ij}(x,u)D_{\alpha}u^{i}D_{\beta}u^{j}\right]^{\frac{m}{2}}dx, \quad m \geq 2 \quad (1.5)$$

where $(a^{\alpha\beta})$ and (b_{ij}) are symmetric positive definite matrices.

We recall that a minimizer for the functional (1.1) is a function $u \in H^{1,m}(\Omega, \mathbb{R}^N)$ such that

$$\mathcal{F}(u;\Omega) \le \mathcal{F}(u+\phi;\Omega)$$

for all $\phi \in H_0^{1,m}(\Omega, \mathbb{R}^N)$.

The functional (1.5) denotes the p-energy of maps between two Riemannian manifolds which the images lie in a single chart (with p = m). The critical point of (1.5) is called a p-harmonic map. When m = 2, the partial regularity of minimizing harmonic