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Abstract In this paper, we obtain the existence of positive solution of

=au = bix)(u — M), re RY
A>0,|vul e LHRY), we ¥ (RY)

N+ 2
under the assumptions that 1 < p < E%’ N = 3, blx) satisfies

biz) € C(R"),b(x) > 0in RY

b(z) —— b* and b(z) > ib‘” for z € RV
P+3

|| o0
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1. Introduction

In this paper, we consider the existence of solutions for the elliptic equation

{ ~Au = b{z)(u - A)’. in RV (1.1)

u>0in RY,|vu| € L3(RY), v e L¥-3(RY)

M—+'§'r N = 3 and b(x) € C(R") is a bounded positive function,

where A >0,1<p < ;?'v'
[t — A)y = max{u — A,0}.
When b(x) is radial, P.L. Lions (1] has studied (1.1). A. Bahri and P.L. Lions 2]

have obtained the existence of a positive solution under the conditions that

{ b{x) — b as |z| = 4o (1.2)

b(z) = b — Clz|*~Y for |z| > Ry

where C" and Ry are some positive constants.
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In this paper we prove
Theorem 1.1 Suppose that b(x) salisfies

(H) blx) —— b, b(z) = #bm for all z € RY

|| e

then (1.1) admits a solution.
Since b° = 0 has been discussed in [2], hereafter, we will always assume &% > 0.

2. Auxiliary Results

k|

Let H denote the closure of C3°(R™) under the norm ||u|| = ( .[R"" |7 ulzd::::) , We

know that for u € H, fR‘"’ |u|T§f"Ed.1: < +oco. Denote the best Sobolev constant by S,
that is
S = inf{f | ﬁ?u}ﬂd::-:|u e H f |u|?f%dm = 1}
R” "/IRY

For any uw € H, ¢ € H we have

[ = Moo < 30~ RE 55 ) (2.1)

N=2
To prove (2.1), let us notice that for u € H, from (fR” |u|}%d$)_zﬁ" < S_%Huﬂ
i EEt Fui Ty 2N
mes{z € RY |u(z) = A} £ STF-2AF-2||u|F-2 (2.2)

(2.1) follows from Holder’s inequality and (2.2).
The variational functional of (1.1) is

1

o ba)(u—Nide (2.3)

1
I(w) =5 fR” | 7 uf?dz —

From (2.1), I(u) is well defined and continuously differentiable.
By [1, 2], the equation

= b= (w — in RV
{—ﬂw—b (w }.]ﬂ_ R (2.4)

w>0in RN, we H

has a unique positive solution w up to a translation and for some constants Co = 0;
Cy > 0, w satisfies

w(z)|z|V 2 —— Co

|| —+o0 EEEI-:I'
| v w(z)||z|~F —— (N = 2)Co
|| e

|D?w(z)||z|Y < C1, for |z| > 1 (2.6)




