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STABILITY AND DISPERSION ANALYSIS OF THE

STAGGERED DISCONTINUOUS GALERKIN METHOD FOR

WAVE PROPAGATION
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Abstract. Staggered discontinuous Galerkin methods have been developed recently and are
adopted successfully to many problems such as wave propagation, elliptic equation, convection-
diffusion equation and the Maxwell’s equations. For wave propagation, the method is proved
to have the desirable properties of energy conservation, optimal order of convergence and block-
diagonal mass matrices. In this paper, we perform an analysis for the dispersion error and the
CFL constant. Our results show that the staggered method provides a smaller dispersion error
compared with classical finite element method as well as non-staggered discontinuous Galerkin
methods.
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1. Introduction

Discontinuous Galerkin method has become a class of very popular, efficient and
highly accurate methodologies for the numerical approximation of wave equations
[12, 13, 14, 15]. There are many studies in literature regarding their numerical per-
formance as well as stability and convergence analysis. However, dispersion analysis
is rarely seen despite its importance for wave propagation. The first attempt to
analyze the numerical dispersion for discontinuous Galerkin method for the scalar
wave equation has been carried out in [1], where a complete dispersion analysis
for the interior penalty, upwind and central discontinuous Galerkin methods are
performed for the numerical approximation of the wave equation in both first or-
der and second order forms. Besides, in [11], dispersion analysis for high order
discontinuous Galerkin methods applied to three dimensional Maxwell’s equations
with both centered and uncentered fluxes are carried out. Some superconvergence
results on the dispersion error are also obtained in this work.

Recently, staggered discontinuous Galerkin methods have been developed and are
adopted successfully to many problems such as wave propagation [2, 3, 4, 5, 6], ellip-
tic equation [7], convection-diffusion equation [9] and the Maxwell’s equations [8].
For the numerical simulation of waves, the method is proved to have the desirable
properties of energy conservation, optimal order of convergence and block-diagonal
mass matrices. Our aims in this paper are to estimate the CFL stability condition
corresponding to the leap-frog time discretization and derive the dispersion relation
for the staggered discontinuous Galerkin method developed in [3, 4] for wave prop-
agation. We will show that this method has a better CFL number and a smaller
dispersion error compared with the classical conforming finite element for second
order wave equation [10] as well as the upwind and central discontinuous Galerkin
method for wave equation in first order form [1].
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2. The staggered discontinuous Galerkin method

In this section, we will present the staggered discontinuous Galerkin method
developed by Chung and Engquist [3, 4] for the numerical simulation of waves.
To facilitate the stability and dispersion analysis, we consider the one-dimensional
scalar wave equations
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for (x, t) ∈ (−∞,∞) × [0,∞), where c > 0 is the scalar wave speed. Moreover,
we will consider a uniform partition. Let h > 0 be the mesh size and let xj = jh,
j = 0,±1,±2, · · · , be the nodal points. We define the primal cell Ij+ 1
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Multiplying both sides of (1) by a test function φ, integrating on a primal cell
Ij+ 1

2
and using integration by parts yields
∫
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Similarly, multiplying both sides of (2) by a test function ψ, integrating on a dual
cell I ′k and using integration by parts yields
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The staggered discontinuous Galerkin method can be described as follows. Find
uh ∈ Uh and ph ∈ Wh such that
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for all φ ∈ Uh and ψ ∈Wh, and for all integers j and k.
We will now discuss the choice of the two finite element spaces Uh and Wh. Let

m ≥ 0 be an integer, that corresponds to the degree of polynomials used for trial
and test spaces. For each given primal cell Ij+ 1

2
, we define Rm(Ij+ 1

2
) as the space

of functions which are polynomials of degree at most m on each of the two sub-cells
(xj , xj+ 1

2
) and (xj+ 1

2
, xj+1) with continuity at xj+ 1

2
. Similarly, for each given dual

cell I ′k, we define R
′
m(I ′k) as the space of functions which are polynomials of degree

at most m on each of the two sub-cells (xk− 1
2
, xk) and (xk, xk+ 1

2
) with continuity

at xk. We will state the definitions of Uh and Wh in the following.

Definition 1. The two finite element spaces Uh and Wh are defined by

(1) φ ∈ Uh if φ|I
j+ 1

2

∈ Rm(Ij+ 1
2
).

(2) ψ ∈ Wh if ψ|I′

k
∈ R′

m(I ′k).

In Figure 1, typical functions in the spaces Uh andWh are shown for the piecewise
linear case, that is m = 1. Here, we use solid line to represent a function in Uh and


