GLOBAL STABILITY FOR THE CAUCHY PROBLEM OF A CLASS OF REACTION-DIFFUSION SYSTEMS*

Lu Zhengyi

(Department of Mathematics, Sichuan University, Chengdu 610064, China[†]) (Received Sept. 27, 1989; revised June 8, 1994)

Abstract By using invariant region argument together with Liapunov function technique for ODE, we give under certain circumstances a global stability analysis of the solutions for Cauchy problem of reaction-diffusion systems.

Key Words Reaction-diffusion systems; Cauchy problem; global stability.
Classification 35K55; 92A15.

1. Introduction

Consider following reaction-diffusion system

$$(u_i)_t - D_i \Delta u_i = f_i(u_1, \dots, u_n), \quad (t, x) \in [0, \infty) \times \mathbb{R}_+^m$$

where $D_i > 0 (i = 1, \dots, n)$ are diffusion constants, $f_i(u_1, \dots, u_n)$ smooth functions on R_+^n . If we denote $u = (u_1, \dots, u_n)$, $f(u) = (f_1(u), \dots, f_n(u))$ and $D = \text{diag}(D_1, \dots, D_n)$, the above system takes the vector form.

$$u_t = D\Delta u + f(u), \quad (t, x) \in [0, \infty) \times \mathbb{R}_+^m$$
 (1)

In the following discussion, we assume that system (1) possesses a unique positive equilibrium solution $u^* = (u_1^*, \dots, u_n^*)$, i.e., $f(u^*) = 0$, $u^* > 0$.

Corresponding to system (1), the following Cauchy condition will be considered in this note:

$$u(0,x) = u^0(x), \quad x \in \mathbb{R}^m$$
 (2)

where $u^0(x)$ is smooth and the derivative of $u^0(x)$ is uniformly bounded and there are two constant vectors C_1 and $C_2(C_1 \ge C_2 > 0)$ such that

$$C_2 \le u^0(x) \le C_1$$

^{*} The project supported by National Natural Science Foundation of China.

[†] Present Address: Institute of Mathematics, Academia Sinica, Beijing 100080.

The smoothness of f(u) and $u^0(x)$ ensures the existence and uniqueness of local solution for the problem (1) and (2). A proof of this conclusion follows from the fundamental solution argument in [1] (Th. 14.2).

The purpose of the present paper is to extend the proving method of [2] which discussed the global stability of positive solutions of Cauchy problem for Lotka-Volterra system to more general system (1) with condition (2).

2. Main Result

In their researches, Chueh, Con lay and Smoller have considerably developed the invariant region method [3] which was introduced by Weighberger in [4]. In order to deal with the existence, uniqueness and asymptotic behavior of solutions, we give an outline of the invariant region argument.

Definition 1 [1] A closed subset $\sum \subset \mathbb{R}^n$ is called an invariant region for the local solution defined by (1), (2), if any solution u(t,x) having its initial value $u(0,x) = u^0(x) \in \sum$ for all $x \in \mathbb{R}^m$, satisfies $u(t,x) \in \sum$ for all $t \in [0,\delta)(\delta > 0)$.

Now, we consider region \sum of the form

$$\sum_{i=1}^{k} \{ u \in \mathbb{R}^{n}_{+} | G_{i}(u) \leq 0 \}$$

where $G_i(u), i = 1, \dots, k$ are smooth real-valued functions defined on open subset of \mathbb{R}^n_+ , and

$$dG_i = \left(\frac{\partial G_i}{\partial u_1}, \cdots, \frac{\partial G_i}{\partial u_n}\right) \neq 0$$

Definition 2 [1] The smooth function $G: \mathbb{R}^n_+ \to \mathbb{R}$ is called quasi-convex at u, if whenever $dG_u(\eta) = 0$, then $d^2G_u(\eta, \eta) \geq 0$, where

$$d^2G(u) = \Big(\frac{\partial^2 G(u)}{\partial u_i \partial u_j}\Big)_{n \times n}$$

According to the preceding definitions, the following result was given in [1].

Lemma 1 Consider the above \sum , and suppose that for all $t \in \mathbb{R}_+$ and for every $u^0 \in \partial \sum$ (so $G_i(u^0) = 0$ for some i), the following conditions hold:

1) dG_i at u^0 is a left eigenvector of D, for all $x \in \mathbb{R}^m$,

2) If $dG_iD = \mu dG_i$, with $\mu \neq 0$, the G_i is quasi-convex at u^0 ,

3) $dG_i(f) < 0$ at u^0 , for all $t \in \mathbb{R}_+$. Then \sum is invariant for (1).

Obviously, if system (1) admits a bounded invariant region \sum , and $u^0(x) \in \sum$ for all $x \in \mathbb{R}_+^m$, then the solution of problem (1) and (2) exists for all t > 0 and this solution must be bounded.