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Abstract In this paper we have obtained the existence of globally smooth so-
lutions to an inhomogeneous nonstrictly hyperbolic system #; — (v(1 = u)); = 0,

vy + (%vi - c.:.u) = f(u,v) by employing the characteristic method and.the fixed-
point theorem in Banach spaces.
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1. Introduction

The purpose of this paper is to study the Cauchy problem for an inhomogeneous
quasilinear hyperbolic system

ur — ({1 —u))y =10 S i
T, t) € X Hay :
Uy + (%’ug - u:’:.:]'.'.r,)I = flu,v) *

This model arises in chemical engineering and is treated as a nonstrictly hyperbolic
system. Here f(u,v) is a C*-smooth mapping from R® to R and ¢ is a positive
constant. Without loss of generality we assume that ¢y = 1 in the following context.
For such a system, the two eigenvalues are

1 1
AM=v—=(1=-u)Z, MA=v+(1l-u)2

which coalesce on the line w = 1 in the (u,v)-plane. Thus the system is not strictly
hyperbolic over the domain {(u,v): —oo < u <1, —0o < v < +oo}. The corresponding
Riemann invariants are respectively:

1 1
wlw,v) =v+2(1 —u)2, z(u,v)=v—2(1—u)2
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We recall that for strictly hyperbolic systems, the global existence of smooth solu-
tions to the Cauchy problem has been obtained in [1]-[4] by applying various methods.
These results are quite perfect. However, to our knowledge, very few results have been
acquired about the existence of globally smooth solutions to nonstrictly hyperbolic
systems of quasilinear equations. On the other hand, one turns to consider globally
continuous solutions to nonstrictly hyperbolic settings. In this regard, we refer the
reader to the work of [5]-[7]. In this paper our interest is mainly in globally smooth
solutions to (1.1) with initial values

(u(z,0), v(z, 0)) = (uo(x),vo(z)), z€R (1.2)

by employing the characteristic method and the fixed-point theorem in Banach spaces.
This technique agrees, in spirits, with the one used in the arguments of [1] and [2]. We
believe that the technique can also be applied to many other cases.

It is well-known that smooth solutions, in general, may not exist globally to the
Cauchy problem of hyperbolic systems of first order quasilinear equations even if ini-
tials are sufficiently smooth. As a matter of fact, shock waves are generally involved
in solutions as time evolves, Of course, in this article there are no shock waves but
rarefaction waves in solutions when initial data satisfy certain mandatory restrictions.
Thus it is required to invéstigate generalized (weak) solutions to quasilinear hyperbolic
equations. The recently-developed theory of compensated compactness has proven to
be a powerful tool in establishing the existence theorem of generalized (weak) solu-
tions to quasilinear hyperbolic conservation laws for large initial data. Nevertheless,
no framework has been established on proving the compactness of approximate solu-
tions for nonstrictly hyperbolic system, which contrast sharply with strictly hyperbolic
systems!®l, although existence results have been obtained for some special nonstrictly
hyperbolic conservation laws®=01. This is the reason why we want to study globally
smooth solutions to (1.1) and (1.2).

2. Smooth Saiutimns

Our goal is to prove the existence of globally smooth solutions to (1.1) and (1.2).
For this purpose we first study the following initial value problem

wy + Aglw, 2)w, = glw, z)
(z,t) € R x Ry (2.1)
z + Alw, 2)z; = glw, z)
and
{w(ﬂ::-ﬂag{m:t}}hﬂﬂ = {TUUI'::L'}: ED{EM? re R {22)
1 1 1 B
where glw, z) = _f(l - E[w — z)%, E{w—l— z]) and Aq{w, z) = gw + 1% Arlw, z) =
%w + %z The initial values are defined by

wo(z) = vo(x) + 2(1 — up(z))3




