THE SEMI-GLOBAL ISOMETRIC IMBEDDING IN R³ OF TWO DIMENSIONAL RIEMANNIAN MANIFOLDS WITH GAUSSIAN CURVATURE CHANGING SIGN CLEANLY*

Dong Guangchang

(Center for Mathematical Sciences, Zhejiang University, Hangzhou, 310027)

Dedicated to the 70th birthday of Professor Zhou Yulin

(Received Feb. 28, 1992; revised May 12, 1992)

Abstract An abstract Riemannian metric $ds^2 = Edu^2 + 2Fdudv + Gdv^2$ is given in $(u, v) \in [0, 2\pi] \times [-\delta, \delta]$ where E, F, G are smooth functions of (u, v) and periodic in u with period 2π . Moreover $K|_{v=0} = 0$, $K_v|_{v=0} \neq 0$, where K is the Gaussian curvature. We imbed it semiglobally as the graph of a smooth surface x = x(u, v), y = y(u, v), z = z(u, v) of R^3 in the neighborhood of v = 0.

In this paper we show that, if $[K_c\Gamma_{11}^2]_{v=0} < 0$ and three compatibility conditions are satisfied, then there exists such an isometric imbedding.

1. Introduction

Let

$$ds^{2} = E(u, v)du^{2} + 2F(u, v)dudv + G(u, v)dv^{2}$$
(1)

be a sufficiently smooth Riemannian metric in $(u, v) \in [0, 2\pi] \times I_{\delta}$, where $I_{\delta} = [-\delta, \delta]$ and E, F, G are periodic functions of u with period 2π .

Consider the isometric imbedding problem in the neighborhood of $\Lambda = [0, 2\pi] \times \{0\}$, i.e. realizing ds^2 in $[0, 2\pi] \times I_{\delta_1}(0 < \delta_1 < \delta)$ as the graph of a smooth surface x = x(u, v), y = y(u, v), z = z(u, v) in R^3 such that $ds^2 = dx^2 + dy^2 + dz^2$. It is well known that the above problem was solved by [1], [2] for the cases of Gaussian curvature K(u, v) > 0 or K(u, v) < 0 respectively. And it was solved by [3] for the case K(p) = 0, $DK(p) \neq 0$ in $I_{\eta} \times \{0\}$ (η is small). In this paper we solve the isometric imbedding problem in the neighborhood of Λ with $K|_{\Lambda} = 0$, $K_v|_{\Lambda} \neq 0$ and K_v has different sign with Γ_{11}^2 on v = 0. In case K_v has the same sign with Γ_{11}^2 , the semi-global imbedding problem is still open. The reason is, in the later case to solve z reduced to Tricomi mixed type equation, it is difficult to treat for periodic case, while for the former case, it reduced to a Buseman mixed type equation and easily to be solved.

^{*} The project supported by National Natural Science Foundation of China.

2. Necessary Conditions for Imbedding

It is well known that

$$K = -\frac{1}{2}(EG - F^2)^{-1}(E_{vv} - 2F_{uv} + G_{uu})$$

$$+\frac{1}{2}\Gamma_{22}^1 E_v + \frac{1}{2}\Gamma_{12}^2 G_u + \frac{1}{2}\Gamma_{11}^1 (G_u - 2E_v) + \frac{1}{2}\Gamma_{11}^2 G_v$$
(2)

where $\Gamma^{i}_{jk}(1 \leq i, j, k \leq 2)$ are the Christoffel symbols, i.e.

$$\Gamma_{11}^{1} = \frac{1}{2} (GE_{u} - 2FF_{u} + FE_{v})/(EG - F^{2})$$

$$\Gamma_{11}^{2} = \frac{1}{2} (2EF_{u} - FE_{u} - EE_{v})/(EG - F^{2})$$

$$\Gamma_{12}^{1} = \frac{1}{2} (GE_{v} - FG_{u})/(EG - F^{2})$$

$$\Gamma_{12}^{2} = \frac{1}{2} (FG_{u} - FE_{v})/(EG - F^{2})$$

$$\Gamma_{22}^{1} = \frac{1}{2} (2GF_{v} - GG_{u} - FG_{v})/(EG - F^{2})$$

$$\Gamma_{22}^{2} = \frac{1}{2} (FG_{u} - 2FF_{v} + EG_{v})/(EG - F^{2})$$

Let z(u, v) be an arbitrary smooth function of u, v and let the metric g be

$$g = ds^2 - dz^2 = (E - z_u^2)du^2 + 2(F - z_uz_v)dudv + (G - z_v^2)dv^2$$

Assume that g is flat. It means the Gaussian curvature $K_g=0$. The condition for $K_g=0$ is equivalent to \mathfrak{g}

$$(z_{uu} - \Gamma_{11}^1 z_u - \Gamma_{11}^2 z_v)(z_{vv} - \Gamma_{22}^1 z_u - \Gamma_{22}^2 z_v) - (z_{uv} - \Gamma_{12}^1 z_u - \Gamma_{12}^2 z_v)^2 - [EG - F^2 - (Gz_u^2 - 2Fz_u z_v + Ez_v^2)]K = 0$$
(4)

Theorem 1 If there exist smooth isometric imbedding functions x = x(u, v), y = y(u, v), z = z(u, v) in the small neighborhood of Λ and periodic with period 2π in u and $z = O(v^2)$, then we have

$$[K_v \Gamma_{11}^2]_{\Lambda} < 0$$
 (5)

$$\int_0^{2\pi} [|\Gamma_{11}^2| (EG - F^2)^{1/2} / E]_{v=0} du = 2\pi$$
(6)

$$\int_0^{2\pi} E(u,0)^{1/2} \exp\left\{\sqrt{-1} \int_0^u [|\Gamma_{11}|^2 (EG - F^2)^{1/2} / E]_{v=0} du\right\} = 0 \tag{7}$$