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Abstract An abstract Riemsamiag metric ds? = Edu® + 2Fdudy + Gdv? ig given
m (u,2) € [0, 2n] x [—4, 8] where E. F. @ are snooth fnnetions of (w, v) and periodic in
with period 2w, Moreover Klo—g = 0. & rlo=a # 0, where K is the Gaussian curvature,
We imbed it semiglobally as the grapli of a smooth surface ¢ = zlw,v), ¥ = ylu,v),
z = z(u,v) of R* in the neighborhood of v = ().

]

In this paper we show thab, if K D)oz < 0 aiid thiee compatibility conditions
are satisfied, then there exists snch an isometric imbuedding,

1. Introduction

Let

ds® = E(u,v)du® + 2F(u,v)dudv + G(u, v)dv? (1)

be a sufficiently smooth Riemannian metric in (u,v) € [0,27] x I, where Is =[-8, 8]
and B, F', G are periodic functions of u with period 2. :

Consider the isometric irbeddin g problem in the neighborhood of A = [0, 2x] = {0},
Le. realizing ds* in [0, 27 x J5, (0 < 6, < 8) as the graph of a smooth surface z — z(u, v),
¥ =y(u,v), z = z{u,v) in B® such that ds? = dz? + dy® + dz2. It is well known that the
above problem was solved by [1], [2] for the cases of Gaussian curvature K (w,%) > 0 or
K(u,v) < 0 respectively. And it was solved by [3] for the case K(p) = 0, DE(p) # 0
in I, x {0} (n is small). In this paper we solve the isometric imbedding problem in
the neighborhood of A with K|r = 0.Bola20.80d.- 5 has different sign with I', on
v = 0. In case K, has the same sign with T2, the. semi. global imbedding problem is
still open. The reason is, in the later case to solve z reduced to Tricomi mixed type
equation, it is difficult to treat for periodic case, while for the former case, it reduced
to a Busemnan mixed type equation and easily to be solved.
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2. Necessary Conditions for Imbedding
It 15 well known that

1
H = —E{EG — FEJ“I{EUH Tk EEHE + G'I.:'I::;I
1

1
21“%1'[‘5'“ - 2E,)+ EI‘{*IGH (2)

1 1
+505Ey + JTHGu +

where T, (1 < 4,7,k < 2) are the Christoffel symbols, i.c.

i, = %{GE“ — 2FF, + FE,)/(EG - F?)
T2 = %[EEFH — FE, - EE)/(EG - F?)

1 )
T%z = E{GEH — FGL)/(EG - F?)

(3)

1 _ n
F%E ¥ E(FGH r FEH}"'II{EG_ F'}
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IS, = =(2GF, - GG, - FG,)/(EG ~ F?)
1
i = E{FG“ —2FPF, + EG,)/(EG - FY)
Let z{u,v) be an arbitrary smooth function of u, v and let the metric g be

g=ds® — dz® = (B - 22)du® + 2(F — z,2,)dudv + (G — 22 )dv?

Assume that g is flat. It means the Gaussian curvature X g = 0. The condition for
K, = 0 is equivalent tol3

1 2 1 2 1 2
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— [BG - F? — (G2l — 2Fz,2, 4+ Ez3)]K =0 (4)

Theorem 1 If there exist smooth isometric imbedding functions ¢ = z(u,v), y =
y(w,v), = z{u,v) in the small neighborhood of A and periodic with period 27 in u and
z = O(v?), then we have

(KT < 0 (5)

|
f.:= IT3:I(EG — F*)1/? [ E]y—qdu = 2n (6)
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