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Abstract In this paper we consider the well-posedness for a class of nonlinear
integrodifferential equations of parabolic type. We use integral estimates to deduce
an @ prieri estimate in the classical space E’E"'“’l"'%. The existence of the solution is
established by means of the continuity method which is similar to a parabolic initial
and boundary value problem. Moreover, the continuous dependence upon the data and
the uniqueness of the sclution are obtained. Finally, the results are generalized into a
class of nonlinear integrodifferential systems,
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1. Introduction

Consider the following integrodifferential equation of parabolic type

Ju g i Lo
el E[ﬂ{ﬂ:,t,u]ﬁl -{-L {E{b{z,i,muﬂ] + CI{:I.'J,,H,TL;F}}G{-T., (z,0) € Q7 (1.1)

with the initial and boundary conditions

w(0,8) = fi(t), 0<t<T (1.2)
u(1,t) = fa(t), D<t<T [1:3)
ul(z,0) = ug(z), )< <] (1.4)

where {7 = {(2,1):0<z < 1,0 <t < T}.

The problem (1.1)-(1.4) can be used as various mathematical models for many
physical processes in the fields of heat transfer and thermoelasticity in which the effect
of past history is taken into account. The reader can find these models in [24] and the
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references over there. On the other hand, if one takes the derivative with respect to the

variable ¢ to Equation (1.1), he obtains a mixed type of equation which describes the
propagation of disturbance in viscous media (cf. [2], 8], [18], [20], etc.). Motivated by
these physical models, we are interested in the existence and uniqueness of the solution
for the problem (1.1)—(1.4). The study for such kind of integrodifferential equations
‘has been developed for many years. A large number of authors (cf: eg. [1}; [6], [T,
[12], [16], [19], [21]) write the equation into the following abstract form

¢
di;[;j + At ult))u(t) = g{t,u[tLj[; hiz,s,u{s))ds)
in a Banach space. Under the various assumptions on the operator A and the lunction
g, they employ the semigroup theory to establish the existence as well as the uniqueness
of the solution. Moreover, several people investigate the problem from another point
of view. They treat Equation (1. 1] as a mixed type one with the proper initial and
boundary conditions (Refer to [2], [5], [8], [26], [28], e.g.). Some of them apply the
argument of separation variables to express the solution as a series and obtain the
existence, uniqueness and the asymptotic behavior of the solution. The authors of [20]
consider the problem in n-dimensional space and obtain the global solvability via the
method of continuity. Other approaches such as the contracting mapping principle,
compactness, etc. are also applied to establish the existence and the uniqueness of the
solution. However, most of these previous works on the global solvability deal with the
equation in which the principal part is linear even in one space dimension. Recently,
the author of [31] considers the problem from a rather different point of view. He uses
the argument which is developed in [32] to obtain the global solvability for a class of
nonlinear integrodifferential equations. In this paper, we follow the idea of [31] and deal
with a different class of nonlinear integrodifferential equations. The classical solution
for the problem (1.1)-(1.4) is established by means of the classical continuity method
similar to a parabolic initial and boundary value problem. It is worth while pointing
out that our method is also valid for a class of quasilinear integrodifferential systems.
Throughout this paper, without loss of generality we assume that

fi(t) = falt) =

We also assume the following conditions hold.
H(1) a(z,t,u) € C**3Qr x R!) and a(z,t,u) > ag > 0 for (z,t,u) € Or x HL.
H(2) b(z,t,u, p), e(z,t,u,p) € CEHa+ad2(Qy » R?). Moreover,
(a) [6(z, 1,1, p)| + |e(z, t,u, p)| < Mo[L + [u] + [p]], (=1, u,p) € QT X R,
(b) 1bs (2 £, . p)| < My(lu)[1 + [pl] and [bu(w,t,w,p)] + [Bp(z,t,u,p)| < Ma(lu]) for
pe R,
where Mg is a constant, M;(s) and Mz(s) are two known increasing functions of s.
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