ON THE EXISTENCE OF POSITIVE SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS WITH MIXED BOUNDARY CONDITIONS 1)

Xue Ruying

(Dept. of Math., Hangzhou University, Hangzhou, 310028) (Received Dec. 11, 1989; revised Nov. 21, 1990)

Abstract In this paper, the existence of positive solutions for the mixed boundary problem of quasilinear elliptic equation

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = |u|^{p^*-2}u + f(x,u), & u > 0, \quad x \in \Omega \\ u|_{\Gamma_0} = 0, & \frac{\partial u}{\partial \vec{n}}\Big|_{\Gamma_1} = 0 \end{cases}$$

is obtained, where Ω is a bounded smooth domain in \mathbb{R}^N , $\partial\Omega = \bar{\Gamma}_0 \cup \bar{\Gamma}_1, 2 \leq p < N$, $p^* = \frac{Np}{N-p}$, Γ_0 and Γ_1 are disjoint open subsets of $\partial\Omega$.

Key Words Critical point theory; quasilinear elliptic equation; mixed boundary condition; isoperimetric constant. Classifications 35J20, 35D05, 35J60.

1. Introduction

Let Ω be a bounded smooth domain in $\mathbb{R}^N(N \geq 3)$ whose boundary $\partial \Omega$ is made of two manifolds Γ_0 and Γ_1, Γ_0 and Γ_1 have positive (N-1)-dimensional Hausdorff measures. In this paper we are concerned with the existence of positive solutions for quasilinear elliptic equation with mixed boundary conditions

(P)
$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = |u|^{p^{\bullet}-2}u + f(x,u), & u > 0, \quad x \in \Omega \\ u|_{\Gamma_0} = 0, \quad \frac{\partial u}{\partial \vec{n}}|_{\Gamma_1} = 0 \end{cases}$$

where $2 \leq p < N, p^* = \frac{Np}{N-p}$; f(x,u) is a lower-order perturbation of $|u|^{p^*-2}u$ in the sense that $\lim_{u \to \infty} \frac{f(x,u)}{|u|^{p^*-2}u} = 0$; \vec{n} is the outward unit normal to $\partial \Omega$.

Many satisfactory results on the existence of nontrivial solutions have been obtained in the cases $\Gamma_1 = \emptyset$ or $p^* < \frac{Np}{N-p}$ (see [1]-[6]), but few have been known in the case

¹⁾ The project supported by Natural Science Foundation of Zhejiang Province.

 $\Gamma_1 \neq \emptyset$ and $p^* = \frac{Np}{N-p}$. There are two difficulties in the study of problem (P): one is that $p^* = \frac{Np}{N-p}$ is the limiting Sobolev exponent for the embedding $V^p(\Omega, \Gamma_1) \hookrightarrow L^{p^*}(\Omega)$, where $V^p(\Omega, \Gamma_1) = \{u \in H^{1,p}(\Omega) | u = 0 \text{ on } \Gamma_1 \}$, the other is that the infimum

$$S(\Omega,\Gamma_1)=\inf\Big\{\int_{\Omega}|\nabla u|^pdx|u\in V^p(\Omega,\Gamma_1)-\{0\},\quad \int_{\Omega}|u|^{p^*}dx=1\Big\}$$

depends on Ω and Γ_1 (see [7]).

In this paper, we develop the methods in [1] and [5], and obtain the existence results for the problem (P). Our results are based on those of P.L. Lions, F. Pacella and M. Tricarico [7].

2. Preliminaries

Let C_N be the measure of the unit ball in R^N . As shown in [7], it is possible to associate with the set Ω an isoperimetric constant $Q(\Omega, \Gamma_1) \in [(NC_N^{1/N})^{-1}, \infty)$. Then there exists a number $\alpha \in (0, \pi]$ such that $Q(\Omega, \Gamma_1) = (N(\alpha_N)^{1/N})^{-1}$, where α_N is the measure of the unitary sector $\Sigma(\alpha, 1), \Sigma(\alpha, R)$ denotes the sector of redius R and amplitude α defined by

$$\sum (\alpha, R) = \left\{ x \in \mathbf{R}^N \middle| \begin{array}{l} 0 \leq |x| < R, \theta_i \in (0, \pi) \quad (1 \leq i \leq N-2), \theta_{N-1} \in (0, \alpha) \\ (\rho, \theta_1, \cdots, \theta_{N-1}) \text{ is the polar coordinates in } \mathbf{R}^N \end{array} \right\}$$

$$\Gamma_0 = \left\{ x \in \partial \sum (\alpha, R) ||x| = R \right\}, \quad \Gamma_1 = \partial \sum (\alpha, R) - \Gamma_0$$

Let ε_{α_N} be the class of open sets whose isoperimetric constants $Q(\Omega, \Gamma_1)$ are given by $(N(\alpha_N)^{1/N})^{-1}$. We have

Theorem 2.1[7] If
$$\Omega \in \varepsilon_{\alpha_N}$$
 and $1 , we have$

$$\int_{\Omega} |\nabla u|^p dx \ge S(\alpha_N) \Big(\int_{\Omega} |u|^{P^{\bullet}} dx \Big)^{\frac{p}{p^{\bullet}}}, \quad u \in V^p(\Omega, \Gamma_1)$$

where

$$S(\alpha_N) = \left(\frac{B^{\frac{1}{p^*}}}{N\alpha_N^{1/N}}\right)^{-1}, \quad B = \left(1 - \frac{1}{p}\right)^{p^*} \left\{\frac{\Gamma(N)}{\Gamma(\frac{N}{p})\Gamma(N+1-\frac{N}{p})}\right\}^{-\frac{p}{N}}$$

Moreover, the constant $S(\alpha_N)$ is achieved for $\Omega = \Sigma(\alpha, R)$ for any R > 0. Define

$$S(\Omega, \Gamma_1) = \inf \left\{ \int_{\Omega} |\nabla u|^p dx | u \in V^p(\Omega, \Gamma_1), \int_{\Omega} |u|^{p^*} dx = 1 \right\}$$
 (2.1)

$$||u|| = \left(\int_{\Omega} |\nabla u|^p dx\right)^{\frac{1}{p}}, \quad u \in V^p(\Omega, \Gamma_1)$$
(2.2)