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Abstract We study the behavior of the solution u® to the semilinear wave equa-
tion with mitial data af +w(i=1,2) in multidimensional space, where u; is a classical
function and af is smooth and converges to a distribution a; as € — 0. In some cir-
cumnstances one can prove the convergence of u®, and our results express a striking
superposition prineiple. The singular part of the solution propagates linearly. The clas-
sical part shows the nonlinear effects. And, the limit of the nonlinear solution u*, delta
wave, as the data become more singular is the sum of the two parts.
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1. Introduction

In [1], J. Rauch & M. Reed studied the behavior of solutions, u®, to the strictly
hyperbolic semilinear system in one space dimension

{ Lut = (3, + A(z,1)8: + B(z, 1)) = fz,1,u)
uli=0 = g+ h°

where g € L' is a classical function, h® is smooth and converges to a distribution p
as £ — 0. The authors used the character of that system which can integrate along
the characteristic in one space dimension sufficiently, and confirmed that the limit of
solution u* as the data become more singnlar is the sum of the two parts — “singular”
and “classical”, denoted by o and & respectively, where o € D', @ € C([0,T]; L'). They
call @ + @ the solution of Lu = f(f,z,u) with initial data g + . The singular part of
the solution propagates linearly. The classical part shows the nonlinear effects. In [2].
there is a similar result to the nonlinear Klein-Gordon equation in one space dimension.
However, in multidimensional space the problem as above becomes more difficult and
complex. It can be illustrated by the wave equation. First, there isn't any estimate
for L? — L¥(p # 2), and furthermore, the support of the fundamental solution Ey
of the wave equation varies as dimensional changes. If n is odd and n > 1, both the
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support and singular support of Ey are exactly equal to the boundary of the forward
light cone. For all other values of n, the support is exactly equal to the forward light
cone itself but the singular support is on the boundary of the forward light cone. As
n — 400, E4 becomes less and less “regular”, If n =1,E4 is bounded. In both cases
n = 2 and n = 3, we know that E+ is a Radon measure. When n = 2, Ey Is absolutely
continuous with respect to the Lebesgue measure, but not bounded. When n = 3, Es
is a measure carried by the surface of the forward light cone. When n = 4, it ceases
to be a measure. It is the distribution derivative of a measure carried by the forward
light conel®. It is not difficult to see that there must be more additional assumptions
on nonlinearity of f if one requires that the superposition principle holds.
We consider the following problems at first:

{ Lut = f(uf) { Lo® =10 Li = f(u)
ﬂElt:ﬂ — h'E + Thn, I!T'FElE::I'.'I = h'tj li-|!'|-:I=|::| = Uup
where h® approaches delta function in the sense of distribution. Requiring that the
limit of u* has superposition property, we must show that v® = u® — ¢ — @ converges
to zero in some sense as € — 0. Let ug = 0, and f(0) = 0, we have & = 0. 0 converges

to the fundamental solution in the sense of distribution. So it is equivalent to proving
that the solution of the following problem

Lu® = f(u®)
uelf:{l = h?

approaches fundamental solution in the sense of distribution as ¢ — 0. This requires
that f(u®) — 0 in the sense of distribution.
As an example, we consider the following initial problem in three space dimensions

Ou® = f{«u"}
6%|an = Gln)

| ufli=o =0

g

where 8.(r) equals 1/e® for 7 < &, and equals 0 for r > . 7 = (D332 2 =
(21, 22,73) € R®. Solving this initial problem with f = 0, we have

i = 27+ Obelr +8) + (= Ddelr ~ 1)

When t > ¢, we have
T
#w* = 1
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