A MAXIMUM PRINCIPLE FOR ELLIPTIC AND PARABOLIC EQUATIONS WITH OBLIQUE DERIVATIVE BOUNDARY PROBLEMS*

Wang Lihe

(Princeton University, U. S. A.) (Received Oct. 30, 1990; revised Jan. 3, 1992)

Abstract This paper prove a maximum principle for viscosity solutions of fully nonlinear, second order, uniformly elliptic and parabolic equations with oblique boundary value conditions.

Key Words Maximum principle; viscosity solution; fully nonlinear equations.
Classification 35B45, 35K55.

In this note, we prove an Aleksandrov-Backlman-Pucci type maximum principle when the boundary conditions consist of oblique derivative conditions and Dirichlet conditions. We will show that the maximum principle holds if a large portion of the boundary has Dirichlet boundary conditions.

This kind of estimates are important for the oblique derivative problems. The reason is the following. If we blow up a solution of the oblique derivative problem near the boundary, the blow-up solution satisfies the above mixed boundary value problem. We will investigate this in a forthcoming paper.

1. The Maximum Principle, Elliptic Case

Let Ω be a bounded domain in \mathbb{R}^n . Let $\partial \Omega = \partial_d \Omega \cup \partial_n \Omega$. Assume $\partial_d \Omega$ is closed and $\partial_n \Omega$ is open with respect to the relative topology of $\partial \Omega$.

Consider a fully nonlinear elliptic operator

$$F(D^2u, Du, u, x) = 0 (1)$$

in Ω , with uniformly elliptic condition

$$\lambda |P| \le F(M+P,v,u,x) - F(M,v,u,x) \le \Lambda |P| \tag{2}$$

for any positive definite matrix P, where λ , Λ are fixed positive constants.

^{*} The project supported by NSF.

We say u is a solution of (1), always according to [1], namely in the sense of viscosity solutions.

We will first consider a special class of operators

$$F(D^2u, Du, u, x) = g(x, t)$$
(3)

with the condition

$$F(0, P, u, x) \equiv 0 \tag{4}$$

We need some terminology. Let $\Gamma(\Omega)$ be the convex hull of Ω , namely $\Gamma(\Omega) = \bigcap \{D | D \supset \Omega, \text{ convex}\}.$

Generalized Gauss map for any domain D

$$G: \partial D \to 2^{S^{n-1}}$$
 (the subset of S^{n-1}) $x \to \{\theta: \theta \text{ is an outer unit normal of } \partial D \text{ at } x\}$

Let ds be the normalized surface measure on S^{n-1} .

$$ds(S^{n-1}) = 1$$

For A, a subset of \mathbb{R}^n , let $A \triangleright \{0\}$ be the cone with vertex 0 generated by A. Now, we want to consider the following problem.

$$\begin{cases} F(D^2u, Du, u, x) = g(x) \\ \frac{\partial u}{\partial n} \ge 0 & \text{on } \partial_n \Omega \\ u \ge 0 & \text{on } \partial_d \Omega \end{cases}$$
 (5)

Let C_n be the co-cone of $\partial_n \Omega$ as follows

$$C_n = \{ v \in S^{n-1} | G(\partial_n \Omega) \cdot v < 0 \}$$

Clearly $C_n \triangleright \{0\}$ is a convex set.

Theorem 1 Let u be a continuous solution of (5). Assume $ds(C_n) \ge \alpha$ for some $\alpha > 0$. Then

$$\sup_{\Omega} u^{-} \le C \left(\int_{\Gamma(u)=u} |g^{-}|^{n} \right)^{\frac{1}{n}} \tag{6}$$

where $\Gamma(u)$ is the convex hull of u

$$\Gamma(u) = \sup\{v(x)|v \leq 0 \text{ on } \partial_d\Omega, v \leq u \text{ convex}\}$$

and the constant C depends only on λ , Lambda, n and the diameter of the domain Ω . Lemma $\Gamma(u)$ is C^{11}_{loc} .

Proof We refer this to [1].

Proof of Theorem 1