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Abstract Let M be an n-dimensional noncompact complete Riemannian mani-
fold, “A™ 1s the Laplacian of M. It iz a negative selfadjoint operator in L3{ M).

First, we give a criterion of non-existence of eigenvalue by the heat kernel. Applying
the criterion yields that the Laplacian on noncompact constant curvature space form
has no eigenvalue.

Then, we give a geometric condition of M under which the Laplacian of M has
eigenvalues. It implies that changing the metric on a compact domain of constant
negative curvature space form may yield eigenvalues.
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1. Introduction

If M is a compact Riemannian manifold, then the Laplacian of A has pure point
spectrum. If M is noncompact, the Laplacian may have essential spectrum. For ex-
ample, the Laplacian of R™ has purely continuous spectrum [6]. It is interesting that,
under what geometric conditions, the Laplacian of M always has or never has sigenvalue
([10], Appendix 1).

H. Donnelly, P. Li ([2], [3], [4]), J. F. Escobar ([5]) considered the problem and
mainly proved that

(1) The Laplacian of constant negative curvature space form has no eigenvalue.

(2) If M is simply connected and noncompact with a rotational invariant metric of
non-negative curvature, then the Laplacian of M has no eigenvalue,

In another paper, the author proved that, if M is a complete noncompact manifold
with nonnegative Ricel curvature which possess a pole the essential spectrum of the
Laplacian is (—o00,0].

In this paper, we give a criterion for complete Riemannian manifold to have purely
continuous spectrum by the heat kernel of M. By the criterion, we give a simple proof
the Laplacian of R™ and the Laplacian of constant negative curvature space form have
no eigenvaiue. .

In [9], Cheng J. C. and the author proved that there exist simply connected strongly
negatively curved manifolds, on which the Laplacians have eigenvalues. In this paper,
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we give a geometric condition under which the Laplacian has eigenvalues. The result
shows that although the Laplacian of a constant negative curvature space form has no
eigenvalue, changing the metric on a compact domain may yield eigenvalues.

2. A Criterion of Non-existence of Eigenvalue

Theorem 2.1 Let M be a complete Riemannian manifold, Hy(z,y) is the heat
kernel of M, A > 0. If
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then —A ts not an eigenvalue of the Laplacian of M.
Proof Suppose —Ais an eigenvalue of A, u is the eigenfunction,

Set w(z,t) = fu’ Hy(z,y)uly)dy, w(z,t)=e Mu(z).
Clearly, ;
(rﬁ — %}u{z?i] =0, u(z,0) = u(z)

(& = %)w{nf} =0, w(=z,0) = u(z)

Applying the uniqueness of L%-solution for heat equation, we have

e (=) =f Hi(z,y)u(y)dy
M
Differentiating the last equality with respact to t, we have
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Hence,
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On the other hand, Hoylz, z) = ] Hi(z,y)dy
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Hence,
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