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Abstract In this paper we obtain the existence of W™ splutions of the obstacle
problems for fully nonlinear elliptic equations under more general structure conditions
than those in [1] by using the mollifier approach, which is also extended in our discussion.
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1. Introduction

In [1], by using the method of viscosity solution given by P. L. Lions in [2], Hu Bei
deals with the obstacle problem for fully nonlinear elliptic equations

—F(z,u, Du, D*u) <0 in {1

u(z) < g(z) in Q

(v — g)F(z,u, Du, D*u) =0 in, .1} (L1)
u(z) =10 on a1

He proves that the above problem has the unique viscosity solution in Wh*(0) n

C**(K,) under the natural structure conditions and the concave condition as in [3],
where

Ky ={z € Q| u(z) < g(=)} (1.2)

However, while he discussed the strong solutions, in view of the restriction of his
method, he studies only the following special form

F(z,u,p,r) = F(r) + f(z,u,p) (1.3)

where F' and f are concave in r and p respectively.

The purpose of this note is to get the strong solution of (1.1} under the general
structure conditions. We give the new method of W2 estimate for solutions here.

Let {1 be a bounded open domain in B® and let T = {1 x R x E" x §", where §"
iz the n(n + 1)/2-dimensional space made of symmetric matrices of n-order. Assume
that the obstacle g(z) is in C*({1) and satisfies the consistent condition

(G1) g(z)>0 on 40
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and that F(z,z,p,r) in I satisfies the following structure conditions:
(F1)  There exists positive constant A > 0 such that

dF :
AE* < 5—&& < Am(l2])|€, VvEe R

(F2) |P(z,2,p,0)| < Ama(|2])(1 + [p|*)
(F3) (L4 p) 7 | Fel + | Fe| + (1 + |p]) | Fp| < Apsa(|2])(1 + [pf? + Ir] )
| Faz| + | Faz| + | Fpa| + | Faz| + | Fap| + | Fpp| + (1 + | #])[|Frz| + |Fra| + | Frp]
< Apafl2, [p) (1 + |r])
(F4) F(z,z,p,r) is concave in r.
{FE'] iF{:E:z:-P: & o F(Eﬂ:zﬂ:m:r”
< Ausl2ls Jzol, | 21, lol){] 10 2 — mol + |2 — zo) + | 7|2 + 1}

(F6) F(z,z,p,r) is strictly decreasing in z.

(F7) Fyz, z,0,0) < —Aug

(F7) F(z,9(s) + 2, Dg(z)+p, Dq(z))sgnz < Auo(1 + ||
where 2 € (0, 1) and p;(f = 1,2,3,4,5) are non-decreasing in their variables and g > 0
1s a constant. :

The main results in this paper are the following:

Theorem 1.1  Suppose that g(-) € C*(Q) satisfies (G1) and that F satisfies
(F1)-(F6), (F7) or (FT)'. Then the obstacle problem (1.1) has the unigue solution in
Whe aw2®(q).

Theorem 1.2 Suppose that 0 € C* and

(G2) g(z) >0 ondl or g(z)=0 ondl :

Under the conditions of Theorem 1.1, the obstacle problem (1.1) has the unigue solution
in WHe(0).

For simplicity, we always suppose A = 1,

2. Preliminary Lemmas

First we often need the following well-known lemma:
Lemma 2.1 (cf [4], Lemma 3.1 on p.161) Let ¢ : [Ty, T1] — Rt be a bounded
function, where Ty > Ty = 0. If for any s, : Tp < t < 5 < T4, satisfies

B
1)< @ A 1
p(t) < 0p(s) + = (2.1)
where § € (0,1) and A, B, o are non-negative constants. Then
plt) < C[A - L] foral Th<t<s<T (2.2)
3 (s — )= = gi

where O depends only on 8 and o,

In what follows we shall show the fact that the Hélder norm of a function can be
described by its mollification, which is first given by N. S. Trudinger (cf [7] ). Here we
give some further properties to meet our need.
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