THRESHOLD BEHAVIOR FOR SECOND INITIAL BOUNDARY VALUE PROBLEM OF F-N EQUATIONS

Shen Weixi

(Department of Mathematics, Fudan University, Shanghai) (Received Sept. 8, 1988)

Abstract Under biologically reasonable assumptions the threshold behavior for second initial boundary value problem of F-N equation is proved.

Key Words Threshold behavior; coupled system; second initial boundary value problem.

Classifications 35B40; 35K57.

In this note we consider the second initial boundary value problem of F-N equations in bounded interval as follows:

$$\begin{cases}
v_t = v_{xx} + f(v) - u, & 0 < x < L \\
u_t = \sigma v - \gamma u, & t > 0 \\
t = 0 : v = 0, & u = 0 \\
x = 0 : v_x = h(t); & x = L : v_x = 0
\end{cases}$$
(1)

where v is electrical potential and h(t) represents the stimulus given in the form of electrical current at the end x=0. The threshold behavior, which is very interesting from the point of view of neurobiology, in the term of mathematics is to show that if the strength of stimulus $||h||_C$ or the lasting time T_0 of stimulus is small then the solution to (1) decays to zero as $t \to \infty$.

Although there are many works on threshold behavior for infinite axon or semibounded axon ([1]-[4]), very little was known for bounded axon. But a real nerve has only finite extent.

The biologically reasonable assumptions on (1) are the following:

$$f(v) \in C^2$$
, $f(0) = 0$, $f'(0) = -a < 0$ (2)

$$\sigma, \gamma$$
 are positive constants, $\sigma > 0$, $\gamma > 0$ (3)

$$h(t) \in C^1$$
, $h(0) = 0$, $h(t) = 0$ for all $t \ge T_0 > 0$ (4)

Throughout this note we use the following notation:

$$U = \begin{pmatrix} v \\ u \end{pmatrix}, \|U(t)\|_C = \|v(t)\|_{C([0,L])} + \|u(t)\|_{C([0,L])}$$

$$||h||_C = ||h||_{C([0,T_0])}, \qquad ||U(t)||_{L^2}^2 = ||v(t)||_{L^2([0,L])}^2 + ||u(t)||_{L^2([0,L])}^2$$

The main results of this paper are the following:

Theorem 1 Under assumptions (2)-(4) for problem (1) we have

- (i) For any fixed T₀ > 0 there exists a small constant ε_{T0} > 0 such that if ||h||_C ≤ ε_{T0} then problem (1) admits a unique global smooth solution U(x,t) and ||U(t)||_C exponentially decays to zero.
- (ii) For any N > 0 there exists a small constant r_N such that if $||h||_C \leq N$, $T_0 \leq r_N$, then problem (1) admits a unique global smooth solution U(x,t) and $||U(t)||_C$ exponentially decays to zero.

The proof of Theorem 1 consists of several lemmas.

Lemma 1 For any $U_0 \in C^2$ there exists a constant $\delta > 0$ depending on $||h||_C$, $||U_0||_C$, T_0 such that problem

$$\begin{cases}
v_t = v_{xx} + f(v) - u, & 0 < x < L \\
u_t = \sigma v - \gamma u, & t > t_0, \\
t = t_0 : v = v_0(x), & u = u_0(x) \\
x = 0 : v_x = h(t); & x = L : v_x = 0 \\
h(t_0) = v'_0(0), & v'_0(L) = 0
\end{cases}$$
(5)

has a unique smooth solution in $[0, L] \times [t_0, t_0 + \delta]$ and

10 much odd ni novin autom
$$||U(t)||_C \le K_1(||U_0||_C + T_0||h||_C)$$
 and so in the set of (6)

Proof The solution to (5) can be written as follows

$$\begin{cases} v(x,t) = \omega(x,t) + \sum_{n=0}^{\infty} \int_{t_0}^t [f(v(x,\tau)) - u(x,\tau), X_n] e^{-\lambda_n (t-\tau)} d\tau X_n \\ u(x,t) = \sigma \int_{t_0}^t e^{-\gamma(t-\tau)} v(x,\tau) d\tau - e^{-\gamma t} u_0(x) \end{cases}$$
(7)

where $\omega(x,t)$ is the solution to the following problem:

(8)
$$\begin{cases} \omega_t = \omega_{xx}, & t > t_0, & 0 < x < L \\ t = t_0 : \omega = v_0(x) \\ x = 0 : \omega_x = h(t); & x = L : \omega_x = 0 \end{cases}$$
 (8)