ON NONLINEAR EIGEN-PROBLEMS OF QUASI-LINEAR ELLIPTIC OPERATORS*

Ma Li

(Institute of Math., Peking University, 100871, China) (Received Sept. 28, 1989; revised March, 19, 1990)

Abstract In this paper, we study the following Eigen-problem

$$\begin{cases}
-\frac{\partial}{\partial x_i} \left(a_{ij}(x, u) \frac{\partial u}{\partial x_j} \right) + \frac{1}{2} a_{iju}(x, u) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} + h(x) u = \mu u^{\frac{n+2}{n-2}} & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega \\
u > 0 & \text{in } \Omega \subset \mathbb{R}^n
\end{cases}$$
(0.1)

under some assumptions. First we minimize

$$I(u) = \frac{1}{2} \int_{\Omega} a_{ij}(x, u) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} + h(x)u^2$$

over

$$E_{lpha} = \left\{ u \in H^1_0(\Omega); \int_{\Omega} u^{lpha} = 1 \right\} \quad \left(2 < lpha < N = rac{2n}{n-2}
ight)$$

to give a H_0^1 -solution U_{α} of the perturbation problems of (0.1). Since I is not differentiable in $H_0^1(\Omega)$, the key point is the estimate of U_{α} . Then, we derive local uniform bounds of (U_{α}) and give a 'bad' solution of (0.1). Last, we remove the singular points of the 'bad' solution to obtain a solution of (0.1), our result is a extension of that of Brezis & Nirenberg.

Key Words Non-differentiable; critical; regularity.

Classification 35J.

[2] Ranch J. and Smoller J., Qualita noitouction . I flugh Nagamo equations, Manage

Suppose Ω is a bounded domain of $R^n (n \geq 3)$ with smooth boundary. We will study the following nonlinear eigen-problems: Find a pair $(\lambda, u) \in R \times C^2(\Omega)$ such that

$$-\frac{\partial}{\partial x_i} \left(a_{ij}(x, u) \frac{\partial u}{\partial x_j} \right) + \frac{1}{2} a_{iju}(x, u) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} + h(x) u = \lambda u^{\alpha} \quad \text{in } \Omega$$
 (1.1)

$$u > 0$$
 in Ω (1.2)

^{*}This is a part of the author's Master thesis in Nankai University.

(1.3) In the sense of Gateaux and prove that
$$\Omega G$$
 no $0 = u_n$ in Leving. By

where h(x) is a continuous function, $a_{ij}(x, u)$ is a continuously differentiable function on $\bar{\Omega} \times R$ with following conditions: there exist positive constants $\Lambda_1 \leq 1, \Lambda_* < 1$ such

that
$$\begin{cases}
(a) \ \Lambda_1 \leq a_{ij}(x,u)p_ip_j \leq \Lambda_1^{-1} & \text{for all } (x,u,p) \in \Omega \times R^+ \times S^{n-1} \\
(b) - \frac{u}{2}a_{iju}(x,u)p_ip_j \leq \Lambda_* a_{ij}(x,u)p_ip_j & \text{for all } (x,u,p) \in \Omega \times R^+ \times S^{n-1}
\end{cases}$$
(1.4)

 $\alpha \in \left(1, \frac{n+2}{n-2}\right]$. We have used Einstain sum convention for i, j with the range from 1

n and only use this in the follows. Formally, (1.1) is the Euler-Lagrange's equation of the functional

 $I(u) = \frac{1}{2} \int_{\Omega} a_{ij}(x, u) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_i} + h(x)u^2$

over the set

$$\mathcal{M}_lpha = \left\{u \in H^1(\Omega); \; \int_\Omega u^{lpha+1} = 1
ight\}.$$

But $I(\cdot)$ is not differentiable on H^1 ! The functional $I(\cdot)$ is only differentiable on $H^1 \cap$ L^{∞} , which is a good space in this variational problems. When $\alpha = \frac{n+2}{n-2} := \alpha_0$, another difficulty in solving (1.1-1.3) is that the Sobolev's imbedding $H^{1}(\Omega) \hookrightarrow L^{\alpha_0+1}(\Omega)$ is not compact.

Since we are only seeking positive solutions, without loss of generality, we assume that $a_{ij}(x, u)$ are even in u, i.e. $a_{ij}(x, u) = a_{ij}(x, -u)$.

Our main theorems are Theorem 1 For $\alpha \in \left(1, \frac{n+2}{n-2}\right)$, if the assumption (1.4) holds, then there exists a pair $(\lambda_{\alpha}, u_{\alpha}) \in R \times C^2(\Omega)$ satisfying (1.1-1.3). Moreover, u_{α} minimizes $I(\cdot)$ on M_{α} . For $\alpha_0 = \frac{n+2}{n-2}$. If the condition (1.4) holds with

$$n-2$$
 $ua_{iju}(x,u) \to 0 \quad (u \to +\infty) \text{ uniformly in } x \in \tilde{\Omega}$ (*)

and

$$\inf_{u \in \mathcal{M}_{G_0}} I(u) < \frac{1}{2} S \sqrt[p]{\inf_{x \in \Omega} \det(a_{ij}(x))}$$
 (**)

where

$$a_{ij}(x) = \lim_{u \to +\infty} a_{ij}(x, u)$$

is a continuous function and S is the best Sobolev constant in Rn. Then there exists a pair $(\lambda, u) \in R \times C^2(\Omega)$ satisfying (1.1-1.3).

Our plan of proofs is as follows. To prove Theorem 1, we first get a minimizer of $I(\cdot)$ on M_{α} . Then we construct a special test space for this minimizer to differentiate