EXISTENCE OF CLASSICAL SOLUTION OF A QUASILINEAR STEFAN-SIGNORINI PROBLEM

Yu Wanghui

(Dept. of Math., Peking University, Beijing 100871, China) (Received Sept. 20, 1988; revised Sept. 25, 1989)

Abstract In this paper, we consider an one-phase quasilinear Stefan-Signorini problem. In [1] X. Liu has proved the existence and the uniqueness of this problem by the traditional penalty method (see [3] and [4]). Here we use the Mixed Scheme in [2] which is more suitable to the Stefan-Signorini problem and obtain more natural existence results.

Key words Quasilinear Stefan-Signorini problem; mixed scheme; priori estimates.

Classification . 35K.

1. The Problem and the Results

To find a pair of functions $\{u(x,t),s(t)\}$, u(x,t): $\bar{Q}\to R^1$, $s(t):[0,T]\to [0,1]$, satisfying

$$a(x,t,u)u_{xx} + b(x,t,u)(u_x)^2 + c(x,t,u)u_x + d(x,t,u)u - u_t = f(x,t)$$

$$s(t) < x < 1, \qquad 0 < t < T$$
 (1.1)

$$u(x,t) = \phi(x), \qquad 0 \le x \le 1 \tag{1.2}$$

$$u_x(1,t) = 0, \qquad 0 < t < T$$
 (1.3)

$$u(s(t),t) \ge 0, \qquad 0 < t < T$$
 (1.4)

$$s'(t) = g(t) - u_x(s(t), t), \qquad 0 < t < T \qquad (1.5)$$

$$s'(t)u(s(t),t) = 0, \qquad 0 < t < T$$
 (1.6)

$$s(0) = 0$$
 and $s(0) = 0$ and $s(0) = 0$ and $s(0) = 0$

where $Q \equiv \{(x,t)|0 < t < T, s(t) < x < 1\}$.

The solution $\{u(x,t), s(t)\}$ is classical in the sense that $s(t) \in C^1([0,T]), u \in C(\bar{Q}),$

 $u_x \in C(\bar{Q}), u_{xx} \in C(Q) \text{ and } u_t \in C(Q).$

Assume that $g(t) \in C^1([0,T_0])$, $0 < T_0 \le \infty$, $\phi(x) \in C^2([0,T)]$, the coefficients of (1.1) have continuous derivatives of up to the third order in all their variables, and $\phi(x) \ge 0$, $0 \le x \le 1$, $g(0) - \phi'(0) \ge 0$, $\phi(0)[g(0) - \phi'(0)] = 0$, $d(x,t,\xi) \le \gamma$, $f(x,t) \le 0$, $a(x,t,\xi) \ge \lambda > 0$, where γ , λ and T_0 are given constants.

Moreover, we assume that either of the two following conditions holds:

[A]
$$g(t) \ge 0, t \in [0,T], \text{ or}$$
 $b(x,t,\xi) \le 0, \quad a(x,t,\xi) \le \gamma, \quad |c(x,t,\xi)| \le \gamma$

Theorem Under the above assumptions, for any $\varepsilon \in (0,1)$, there is a $T(0 < T \le T_0)$ depending only on ε , T_0 and g(t), such that the problem (1.1)–(1.7) has at least one classical solution. In addition, $0 \le s(t) \le 1 - \varepsilon$, $0 \le t \le T$, $s(t) \in C^{1+\frac{1}{2}}([0,T])$, $u_{xx} \in L^{\infty}(Q)$ and $u_t \in L^{\infty}(Q)$.

2. The Mixed Scheme

Auxiliary Problem (I) Given a function $u^{n-1}(x)$ and a constant s_{n-1} , $0 \le s_{n-1} < 1$, $u^{n-1}(x) \in C^1([s_{n-1},1])$, $u^{n-1} \ge 0$, find a function $u^n(x)$ and a number s_n , such that $u^n(x) \in C^3([s_n,1])$, $s_{n-1} \le s_n < 1$, and satisfy

$$a(x,t_n,u^n)u_{xx}^n + b(x,t_n,u^n)(u_x^n)^2 + c(x,t_n,u^n)u_x^n + d(x,t_n,u^n)u^n$$

$$= f(x,t_n) + \frac{1}{h}(u^n - u^{n-1}), \qquad s_n < x < 1$$
(2.1)

$$(s,z) = u - u(u,s,z)b + u(s_n) \ge 0 \quad (z_n)(u,s,z)b + z_n(u,s,z)$$
 (2.2)

$$u^n(s_n)\Delta_n=0 (2.3)$$

$$\Delta_n \geq 0 \tag{2.4}$$

$$u_x^n(1)=0$$
 with realizing $u_x^n(1)=0$ with realized $u_x^n(\lambda,b)$ great Second $v_x^n(2.5)$

$$s_n = s_{n-1} + h\Delta_{n-1} (2.6)$$

where $\Delta_n = g(t_n) - u_x^n$, $t_n = nh$, $n = 0, 1, \dots, N, N = \left(\frac{T}{h}\right)$, $h \leq h_0, h_0$ and T are constants to be determined.

Auxiliary Problem (II) Under the assumptions of the auxiliary problem (I), to find $u^n(x)$ and s_n such that $s_{n-1} \leq s_n < 1$, $u^n(x) \in C^3([s_n, 1])$, and satisfy (2.1)-(2.5) and

$$s_n = s_{n-1} + h\Delta_n \tag{2.7}$$