PERIODIC SOLUTIONS OF NONLINEAR WAVE EQUATIONS WITH DISSIPATIVE BOUNDARY CONDITIONS

The state of the s

Qin Tiehu

(Institute of Math., Fudan Univ.) (Received Sept. 30, 1986; revised June 20, 1989)

Abstract Applying Nash-Moser's inplicit function theorem, the author proves the existence of periodic solution to nonlinear wave equation

$$u_u - u_{xx} + \varepsilon g(t, x, u, u_x, u_x, u_x, u_u, u_{xx}, u_{xx}) = 0$$

with a dissipative boundary condition, provided ϵ is sufficiently small.

Key Words Nonlinear wave equation; time periodic solution; dissipative boundary condition.

Classifications 35L70; 35L20; 35B10.

0. Introduction

In this paper we discuss the existence of time-periodic solution for the following boundary value problem of nonlinear wave equation

$$F_{\epsilon}(u) \equiv u_u - u_{xx} + \epsilon g(t, x, u, u_t, u_x, u_u, u_{tx}, u_{xx}) = 0$$
 (0.1)

$$u(t,0) = 0 (0.2)$$

$$u_{x}(t,l) + \lambda u_{t}(t,l) = 0 \tag{0.3}$$

where g is periodic in t with period $\omega, \lambda \neq 0$ is a constant. When (2) and (3) are Dirichlet's boundary conditions and there is a dissipative term λu_i in operator $F_{\varepsilon}(u)$, Rabinowitz in [1] proved the existence of periodic solution if ε is sufficiently small. The aim of this paper is to prove that if a dissipative boundary condition is given at one end of the interval instead of the term λu_i in the equation, then the problem admits a periodic solution provided ε is sufficiently small.

As the second order derivatives of u appear in the nonlinear term of the operator $F_{\epsilon}(u)$, we shall use Nash-Moser's implicit function theorem to obtain the periodic solution of the problem. We shall apply the version of this theorem given by Moser in [2] which requires to solve the linearized equation only.

1. The Main Results

All functions mentioned in this section are periodic in t with the period ω . For simplicity, ω , l and λ are taken below to be 2π , 1 and 1, respectively.

Set

$$Q = [0,2\pi] \times [0,1]$$

and

$$U_p = \{u | \partial_t^j u \in H^5(Q), j \leq p, u(t,0) = u_x(t,1) + u_t(t,1) = 0\},$$

$$F_p = \{u \mid \partial_t^j u \in H^3(Q), j \leqslant p\}$$

with norms

$$|| u ||_{U_{r}} = \max_{0 \leq j \leq r} || \partial_{t}^{j} u ||_{H^{5}(Q)}$$

$$|| u ||_{F_{r}} = \max_{0 \leq j \leq r} || \partial_{t}^{j} u ||_{H^{3}(Q)}$$

where $H^s(Q)$ are Sobolev's spaces on Q with norms $\|\cdot\|_{H^s(Q)}$. It is clear that U_p, F_p are Banach's spaces and

$$U_0 \supset U_1 \supset U_2 \supset \cdots$$
, $F_0 \supset F_1 \supset F_2 \supset \cdots$

For any $u \in U$, we can write it in the form of a Fourier's series

$$u = \frac{1}{2\pi}u_0(x) + \frac{1}{\pi} \sum_{j=1}^{\infty} (a_j(x)\cos jx + b_j(x)\sin jx)$$

We define the truncation operator T_N by

$$T_N u = \frac{1}{2\pi} a_0(x) + \frac{1}{\pi} \sum_{i \le N} (a_i(x) \cos jx + b_i(x) \sin jx)$$

then it is easy to prove that

$$T_N: U_r \longrightarrow U_{r+s}$$

and

$$\parallel T_N u \parallel_{U_{s+s}} \leqslant N^s \parallel u \parallel_{U_s} \tag{1.1}$$

$$\| (I - T_N)u \|_{U_s} \leq N^{-s} \| u \|_{U_{s+s}}$$
 (1.2)

for any nonnegative integer N.

The linearized operator of the nonlinear operator $F_{\epsilon}(u)$ is

$$F_{\epsilon}(u)v \equiv v_{tt} - v_{xx} + \epsilon(a_{11}v_{tt} + a_{12}v_{tx} + a_{22}v_{xx} + a_{1}v_{t} + a_{2}v_{xx} + a_{0}v)$$

where $a_0 = g_u(t, x, u_u, \dots, u)$, $a_1 = g_{u_i}$, $a_2 = g_{u_i}$, $a_{11} = g_{u_u}$, $a_{12} = g_{u_{it}}$, $a_{22} = g_{u_{it}}$

In the following sections, we shall prove that if ε is sufficiently small, then $F_{\varepsilon}(u)$ satisfies the following for a constant b:

- (1) If $u \in U_2$ and $||u||_{U_2} \le b^{-1}$, then $F_{\epsilon}(u) \in F_2$ and $F_{\epsilon}(u)$ is linear and bounded from U_2 into F_2 .
- - (3) If $u \in U_{2+k}$ and $N \geqslant 1$ satisfy

$$\|u\|_{U_{2+\lambda}} \leqslant b^{-1}N^{\lambda}$$
 for $\lambda = 0, 1, \dots, k$

then

$$\parallel F(u) \parallel_{F_{2+\lambda}} \leqslant bN^{\lambda}$$
 for $\lambda = 0, 1, \dots, k$

(4) If $u \in U_{2+k}$, $h \in F_{2+k}$ and $N \geqslant 1$ satisfy

$$\parallel u \parallel_{U_{2+\lambda}} \leqslant b^{-1} N^{\lambda}, \quad \parallel h \parallel_{F_{2+\lambda}} \leqslant b N^{\lambda} \quad \text{for} \quad \lambda = 0, 1, \cdots, k$$

then the linearized equation

$$F_{\epsilon}(u)v = h \tag{1.3}$$

admits a solution $v \in U_k$ satisfying

$$\|v\|_{U_0} \leqslant b \|h\|_{F_2}$$