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Abstract Tppllfmg Nash-Moser’s inplicit function theorem ,the author proves the
exlqtenc& of periodic solution to nonlinear wave equation
Uy, — t,, b 2 LTty U g Uy Uy U ) = 0
with a dissipative boundary condition ,provided e is sufficiently small.
Key Words Nonlinear wave equation;time periodic solution ; dissipative boundary
condition.
Classifications 35L70;35L20;35B10,

(. Introduction

In this paper we discuss the existence of time-periodic solution for the following
boundary value problem of nonlinear wave eguation

F.(u) =un, — 4.+ 3?":!'!1':”:?#ruriuur“urﬂﬂ) = U (0. 1)
w(t,0) =0 (0. 2)
w (t, ) + Au,(E,0) =0 (0. 3)

where ¢ is periodic in ¢ with period ®, A7=0 is a constant. When (2) and (3) are
Dirichlet’s boundary conditions and there is a dissipative term Aw, in operator F,(u),Ra
binowitz in [ 1] proved the existence of periodic solution if & is sufficiently small. The
aim of this paper is to prove that if a dissipative boundary condition is given at one end
of the interval instead of the term A, in the equation ,then the problem admits a periedic
solution provided e is sufficiently small.

As the second order derivatives of u appear in the nonlinear term of the operator
F (u) ,we shall use Nash-Moser’s implicit function theorem to obtain the pericdic solu-
tion of the problem. We shall apply the version of this theorem given by Moser in [2]
which requires to solve the linearized equation only.

1. The Main Results

All functions mentioned in this section are periodic in ¢ with the period . For sim-
plicity ,@,{ and A are taken below to be 2m,1 and 1 ,respectively.
Set

and :
= {u|Fu € HQ),j< pyult,0) = u, (¢, 1) + 2(¢,1) = 0},




F, = n:|‘]'uE:_ H? ()0 = p!

with norms

Il ¢, = max | “ B Q)
:ﬂ::-}Ln-F

|zl » = max || P EI e
# D= j=2p

where H™(Q)) are Sobolev’s spaces on @ with norms || « | wigy- 1t is clear that U, F
are Banach’ spaces and

[,"1_1 miE) {-"r-| ) I!T.-'rg ) owws Fﬂ =y F[ =) FE =

For any €& l/_,we can write it in the form of a Fourier’s series

F

1 1 = e S
° = E}Enﬂ.f.ﬂ -+ ;é (a;(x)cosjz 4 b;(x)sinjr)
We define the truncation ﬂpemtﬂr by

T pthi= Eﬂ,(r] + —-Z{a (z)eosgr + b;(x)sin jz)
FEN
then it is easy to prove that

L e U.—-q--r
and ’ >
| Tyulle, <N lnl, (1. 1)
: fl U T,.,Jaslli < .-"»""’||z:||, (1:-2)
for any nonnegative integer N.
-The linearized operator of the nonlinear operator F,(u) i
Fluw)e=wv, — v+ ela, v, + Byaty 4 Uast,,
+ aiv, + av, + auw) :
where a,=g, (£,2,u,, > yu) ya,=g, a,= Fu, 1011 =Fu, 3012==g, +8:=4, -
. In the following sections,we shall prove that if ¢ is sufficiently small,then F_(u)
satisfies the following for a constant b.
(1) lf ucUyand || | L.'iib_J then F,(z) € F, and F. () is linear and bounded
from U, into F,.
(2) For any u,vE€U, and | | t,.Exé_;b‘”l, | -2 | v, ==b ', we have
| F.Cut2)—F (u)—F.Cu)v || e 5 || ] f‘;
(3) If u€ U, and N=1 satisfy

Iy, S5N for A= 041,00,k
then
|| Fa) ||F =2 ford i =0l k
(4) I wel,,  AEFR,, ,,a-md NZ=1 satisfy
| 2| Ve = haiNe e e = bN* for A =0,1,,k

then the linearized equation
F{alt = (1.3}
admits a solution ?H.,’_—'_L"k'ﬁatjsfying
ol <ol



