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Abstract

This is a continuation of paper (1], The difference between this paper and paper
[17 is that the initial functions considered here are step functions and those considered
in (1] are Lipschitz continuous . Since there are centered rarefaction waves here, mare
delicate techniques are needed. It may be a necessary step in solving p-System with
general initial functions by Glimm’'s scheme, Notice that this paper can not be deduced

from [17].

Consider the initial wvalue problem for Isentropic gas dynamics in Lagrangian
coordinates, so call p-System,

w—u, =0 y4tpi»).=0, (0, oo) ¥ (= o0, o) (P)

(2(0, 2), u(0, 2)) = (palx), ualx)), (—oo, e0) . ()

where the pressure p = p (¢) =0 is a C* function of the snecific volume » >0 and ¥ is

the velocity of the gas. We assume that p' (v} =<0, " () =0 and Jl = () dv

<~ oo, The Riemann invariants are taken as
riy, ») =u-+ ®(»), ) slu, v) =u—9 ), @ (p) = J-l mﬁs

Theorem If u,(z) and v, (z) are bounded step functions, 0 =<V . = vo (@) =¥V*<ecec,
satisfing conditions
|® (volzd) ) — @ (wolz)) | Cwolzad —uslzl). 7y < s (M)
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Te(Zy) =rolra), So(zy) = 7o (xd) , Ty < T3 (M)
> :

Polz +0) — si(z — ) < 2 (co) — co < r <7 oo, (¥F)
where 1, () =7 (Ua(Z), ve(x)), 85(x) =& (¥ (2}, vol(x) ). Suppose that the randon sequence
@ == {an} is uniformly equidistributed on the interval (—1, 1). For given T>0. if the mesh
lengths 120, >0 are suffictently small, the ratio d=I"'>A., where iL.=

VP Fu) . Az a constant, * then the Glimm's approzumations (us (¢, ), va(t. 2)) of
() {!Jmmaﬁmiymuﬂhresmmhmmemfﬂ T )X {—oo, o).
Condition (V) assures that there is no vacuum at the initial instant,
. We refine the definition of uniformly equidistributed sequence given in [17.
Definition A sequtence a == {a,) is uniformly equidistributed on the interval (— 1.

1), if there is a constant e, () < ¢ f::-%* . and a constant D= D{e) >0, such that

|B(j, n, I} — 2= 'nu(D) | << Dn* (D)
m=1, 2, ...holds for any integer j =1 and any subinterval I in the interval =3,51).
where B(j, n, ) denotes the number of m, i< m=j+n—1, with a. & I, and
# (I} is the length of I. The constant I () = 0 is independent of j and 7 .

Uniformly egquidistributed éequ&nce can easily be constructed.
Before proving the theorem, we give the following lemmas. Set f1 = fi (nh, kI) . here

Ff=u v r s, etc., %+ & =even.
Lemma 1 For given tntegers n =0, g > 0 and constant b , if

0= ripy—rl )
Pin—TIb, Sy — D
kold for every k, then
0="rifi—ritl D="sit!— gttt
rIEL _ — iy gy —sti<h

The lemma in paper [13] is a special case of above Lemma 1 as ¢ = 1. The proofs
of the twe lemmas are similar.

ihe Iollowing lemma is trivial .

Lemma 2 For given D{Eff?{m , there are coustants 0~<Zc. << c¢" <Z oo, such that

o (Plrd —DPlp)) <<d (o) — &' (p) <c" (@ (ve) — @ ()

hold for all v, v, O <" Ve o= V<o

According to condition (M) , the Glimm’s approximations under consideration consist
of rarefaction waves. Hereafter rarefaction waves are simply called waves. If wave y is

issued from point {,;:i.i-i:l, kl}, n + k =odd, the (nh kI} is the starting point of ¥, denoted by
F(y) = (n k) . The maximum {minimum) wvalue of wave 3 is defined by
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