Jo Portiel Differential Eguations
' Fol. 2, No. 1(1989), 71—94

ON THE FRECHET DIFFERENTIABILITY
OF FREE BOUNDARY OPERATOR
FOR A MUSKAT TYPE PROBLEM®

. _ Liv Xivuan
(Peking University}
{Received December 28, 1987 revised June 24, 1988}

*1. Introduction and Integral Equations

In this paper we study the following problems: :
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where T >0, a>0, =0 y>=>0 2=>0 and K are given constants, F(£. g (), @ (z)
and ¢ (x) are given functions, and the unknowns are u(x, &), v {z, ¢) and s ¢} . (1. 1) —
(1. 10) form a simplified mathematical model of the one-dimensional flow of iwo
incompressible and immiscible fluids in a porous medium. z = s(f) is the interface
between these two fluids, » (z, £) (resp. » (. £)) is the velocity to the left (resp. right) of
the interface. Problems (1. 1) — ¢1. 10) is an one-dimensional and parabelic version of a
free boundary preblem proposed by Muskat. W. Fulks and R. B. Guenther (1] considered
the initial problems of this type, and proved the local existence and unigueness of solution.
In the one-dimensional flow within a porods medium of two immiscible fivids. the
pressures of two fluids satisfy free boundary problems similar to (1. 1) — (1. 10). The

global existence, unigqueness, regularity and the other properties of solution have been
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discussed by many authors(27, (33, (47,

The main result of this paper
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the Fréchet derivative is
The approach of
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We assume that the data satisfy the regularity and compatibility conditions:
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15 equivalent to (1. 1) — 1.1 can be derive

d in the same way as in [1J. First
of all we define I/ and I’ by
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We will use the standard notations of partial derivatives: kylz, 8) = 3k (z, t) /3x, kyy (x, £)
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