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1. Introduction

In recent years many results regarding the conduction of nerve impulses along an
axon have been got. In particular, attention was paid to the threshold phenomena (see
[1]—[3Jand the cited papers wherein). In this paper we are interested in more compli-
cated situation. Namely , we consider the transmission of nerve impulses along the nerve
fibre bundles in which the interaction may take place between neighbouring excited ax-
ons.

We consider the following medel for a finite number N of neighbouring axons(re-
fer to [4]). Imagine that the axons are running parallél to each other and we locate
each axon in cross section by a vertex of a graph.

Fig:l
where® ¢ “represents the axon and the straight line between neighbouring axons ex-
presses the inte.riicti-::ns each other. Throughout this paper we make the following basic
assumption . !
Axons which are next to each interact and non-adjacent axons do not interact.
If we number each fibre according to its position as the vertex of a graph we can
write down a coupled system of reaction diffusion equations in the form
W,= (Al — aB)W,, + H(W,Z) (1.1)
Ly =XW — I'Z _ (1. 2)
where W, 7 are N-dimensional vectors and W is the N-tuple of membrane potentials, A
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and & constants satisfying Aa=0,[ is the NXN identity matrix, H is the N-tuple of
ionic membrane currents for each fibre, H=F(W) —Z,F(W)= (F (W FOWV T, |
f is of the usual cubic form f(z)=z(1—1x) (r—a) (a=0) D =diaglo, ., ,0x5) =
diag(yy, o0 » Yu) y where 0, 7, >0G=1,, N), B= (b,;) the adjacency matrix for the
graph defined as follows.
If % is a graph on NV vertices Ve ,V y,we define the adjacency matrix

0 ifi=j '
1 if i 3 j and there is an edge in A, 4

connecting V., V;
(0 otherwise

e. g. In the configurations i) ,ii) mentioned above we have

0101001
ﬂlﬂﬂiil D-\. ]
1011000
10100
0101100
01071---0
- 0011010
00001
0001101
LUDD{}”‘ D
1001010

In [4] P. Grendted and B. D. Sleeman studied the Cauchy problem of (1. 12, (L
2) '
t=0; W =W,(z) (1.3
o = Z(x) ; (1. 4)
Using contracting block method they proved that if the coefficients satisfy

o
g > r max — =lA])
A=K ¥y

where 7 is the spectral radius of matrix 0= (la;|)"(la;|) and A= (a,,) is the orthogo-
nal transformation matrix of M= Al — @B, then problem (1. 1)— {i. 4) admits a u-
nigue global solution and the solution decays exponentially to Zero provided that initial
values are stnall. This corresponds to the biological fact that a minimum stimulus is
' needed to trigger nerve fibre bundles;smaller stimuli lead to no signal transmitted down

the axons. But assumption (1. 5} is an extra hypothesis. For example,in case(i) of
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whete a is the constant in the cubic function f.
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In this paper we adopt a different approach ,namely , the energy method to obtain
the similar threshold result without any restrictions on the coefficients.
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