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Abstract

The present papel characterizes the asymptotic behavior of the
timedependent solution of the coupled Belousov-Zhabotinskii reaction diffusion
equations in relation to the steady-state solutions of the corresponding boundary
value problem. This characterization leads to an explicit relationship among the
various physical constants and the boundary and innitial functions.

1. Introduction
In some chemical reaction problems, a simplified model for the concentration
densities u=u (£, #), v =2 ({, 2 of two reactants, such as bromous acid and bromide
jon, is given by a coupled system of reaction diffusion equations in the form
7 el Dl?"‘us # (g — bu — el

(=0, z € 2 (1. D

v, — D,V Py = — ¢ uv
Where D, D, ,a b ¢ and ¢, are positive constants and & is the reaction-diffusion
medium. The coupled system is often referred to as the Belousov-Zhabeotinskii chemical
reaction eguations and has been given considerable attention in recent years (cf. C1-2.
1073 . Much discussion of Eq. (1.1} 1is devoted to the traveling wave solution in the
one-dimensional spatial domain &= R!. When £ is a general bounded domain in R
Egq. (1.1) is supplemented by a boundary condition in the form

a(e) Fu/dv+ flxiu=0

atmav/dv+ flziv=10
together with the initial condition
uth, ¥y =u,(x), v(0, ) =uv,z (x & &) (1. 3
where a =0, =0 witha-+ p = 0, 3/dv is the outward normal derivative on 38, and
g, =0, v, =0in & .1t I3 assurned that the functions in (1. 9y ¢1.3) and the domain &
are smooth and £ (z) is not identically zero (see(5) for the case fizy =0 .
It has been shown in (5] that for any nonnegative initial function . ¥y problem
(1. 1) = ¢1. 3) has a unigue nonnegative solution (u, #) . The aim of this paper is to give
a more precise description about the asymptotic behavior of the solution (u, ») in
relation to the steady-state solutions of the corresponding boundary-value problem
— DN iu=ula— hy — cu)
— D, o= —cuv
afzyau/av + fxu=10 (L. 5)
4@ v/ + B@v=0 (e D8 & AR
Since problem (1. 4) (1. 53 has the trivial solution 0, ) it is interesting to know when it
has a nontrivial solution, and whether and when the time dependent solution (u, o)

converges to-the nontrivial solution. Our main results characterize the asymptotic
hehavior of the solution (u, ») in terms of the various physical constants in ¢1.1) as
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(=0, =& 3L (1. 2)
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well as the effect of the boundary and initial conditions (1. 23 (1. 3).

2. The Main Results

The characterization of the existence of a nontrivial steady-state solution and its
relation to the time-dependent solution is based on the smallest eigenvalue A, and its
corresponding eigenfunction ¢ (x) of the eigenwvalue problem

Vietip=0 in@ Blel=0 onag 2.1
where B{w] = a (x) 3w/3~7 4+ B (z) w for any function w . It is well-known that i, = 0
and @ () >0 in £ . When a (z) >> 0 the maximum principle implies that ¢ (z) = [ on
£2 . We normalize ¢ so that max @ (z) = 1 on & . The following existence result for the
scalar boundary value problem
— DU =U—58N in &, B(J =0 on 32 (2. 2)
is well-knowr.

Lemma 2. 1. Problem (2. 2) has only the trivial solution U=0 when a <" A,D ; and i
itz a unique positive solution Uz (z) whena == 2 D, .

A proof of the above lemma can be found in (9, p. 11747, Based on the solution
U, of problem (Z. 2Z) we state our main results in the following two theorems.

Theorem 1. The sieady-state problem (1. 4) (1. 5) has only the trimial solution (0, ()
when a <C A, D, ; and i has exactly fwo solutions (0, 0) and ¢ Uy, 0) when a>> 2D, , where U,
15 the unique positive solution of (2. 2).

Theorem 2.  Let (u, v} be the nonnegative solution of (1.1)-¢1.3) with any (u,,
v) = (0, 0) and let Uy be the posilive solution of problem (2. 2). Then

Hm (udt, o), vt 2)) = (0, O (2. 3)
=]
when a < A,D or when u (x) =0, and
limfut, ), v, 2) = T (2, O (2. 4)

=t 0a

when @ = 4,0, and u (z) = e@ (x) , where ¢2>0 can be arbitrarily small,

Remark 2. 1. 'When a > 4,0, the conclusion in (2. 4) also hold for any U, (z) ==
0 provided that @(z) >=0 . For in this situation the maximum principle implies that
u(t, ) >0 on R* X Q. By considering problem (1.1) - (1.3) with the initial
functions u (¢, ), v (¢, ) in the domain (f,o0) X Q@ for a fixed {, >0, the
requirement u (£, £) == ew (z) for some &£ > 0 is clearly satisfied. It follows from the
unigueness property of the solution (x, ») that (2. 4) holds.

3. Proof of the Main Theorems
Proof of Theorem 1. Let (I ;(z), V(z)) be any nonnegative solution of (1. 4)
(1. &) . Multiplying both equations in (1. 4) by o (z) and integrating over 2 vield

— D, Jqp?‘ﬁﬂdz = JQJU,.; (g — bl —cVy)dr
& &

e DI- J‘qﬁvwsdﬂ' = = CI. J?HEFSEI

£
By applying the Green’s theorem and using the boundary condition (1. 5) the above
equations become
(A D, — a) J‘q;ltf'ﬁd:.: = — J{bq&ﬂﬁ + cpll Ve dx
& = (3. 1)
i J-QJFSEI = — g, Ju;r;ffﬁ,l*'ﬁria:ﬂ 0

L
Since @ (z) >0 in & . the second relation in (3. 1) implies that Vg (z) =0 in Q.
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