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Abstract
Recently R. Jensen {17 has proved the uniqueness of viscosity solutions in
Wi of second order fully nonlinear elliptic squation Fi(D% , Du, u) == 0 . He docs
not pasume F to be convex. In this paper we extend his result C1] to the cass that
F can be dependent on z, i. €. prove that the wviscosity solutions in W= of the
second order fully nonlinear elliptic equation F (D', Du, u, r) = 0 are unique. We
do not assume F to be convex eithet.

1. Introduction
This paper deals with the problem of uniqueness of viscosity solutions of the fully
nonlinear second order elliptic partial differential equation
F (D%, Du, u zx) = 0 in
with Dirichlet boundary condition
u=g on dJ%a (1. 2)

i

(1. 1)

For any & = [} we define
Ft (D%, Du, u, ) — F (D%, Du, u, z+eDu/(1+ ]Lml“}fh in £, (1.3

F- (D%, Du, u, z) = F (D', Du, u y—sDul (14 |Du|d®H in @, 1.4
where £, = {z € 2 |dist (. 35 e}

In 1983 the definition of “viscosity solution” was introduced by M. (3, Crandall and

P. L. Lions (2] as & notion of weak solution of Hamilton-Jacobi eguation

HDu u z) =70 in 2 (1. 5)
Under some assumptions, they have established global unigueness and existence of
viscosity solutions. In P. L. Lions work™ the definiton of “viscosity solution” was
extended to second order problems, i e, to (1.1), and under some regularity
assumptions on F which include the convexity of F. the unigueness of viscosity
solutions was proved. Finally R.. Jensent proved unigueness of viscosity solutions of
(1. 1) and (1. 2) in 1086. He does not assume F to be convex but only not allow spatial
dependence in z . The techniques he used in (1] are new. He constructed two
apptoximation operators AtCu] =u}f = A7 (w) =u; and proved his result.

In this paper we prove a maximum principle of viscosity solutions which implies
the unigueness of viscosity solutions of (1. 1y and (1. 2) in the two CAsCs: () F is
degenerate elliptic, decreasing and uniformly centinuous in z : of ¢f) F is uniformly
elliptic, nonincreasing Lipschitz continuous in p and uniformly continuous in z . We do
not assume F to be convex either. The techniques which we use are similar to that in
(1] but with some improvement. First we prove that AT [+ takes viscosity
subsolutions of (1. 1) into viscosity subsolutions of Fr (-1 =0and A, [ + ] takes
viscosity supersolutions into viscosity supersoclutions of F7 [ » ) =0. Then we obtain an
estimation of semiconvex functions. Lastly weé combine these results with results of C1)
and give the maximum principle of viscosity solutions.
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We implicitly assume throughout this paper that £2 is a bounded domain in R*, gis
continuous on &4 and solutions of (1. 17 and (1. ) are always in € (),
We wish to thank Prof., Dong Gaungchang for his suggestions and advice.

2. Viscosity Solutions
We begin by recalling some definitions. The set of n %< n real symmetric matrices
will be denoted by & (n) . These matrices admit the partial ordering > where M > N if
M — N is positive semidefinite, A fully nonlinear P. D. 0. F C + ] is defined by
Flel(z) =F (D%, Dp, ¢, =) (z)
for all e SR ) (2. 1)
where FE C(Sn) X R"XRX ) .
Definition 2. 1. The operator FU = ] is degenerate elliptic if
. FM, 9, 8 2) =F(N, p, £&, ) (2. 2)
for al M >N and all (p, 6, x) ER" < R % 2. The operator F[ + ] & uniformly elliptic if
there is a constant ¢, > () such that
F(M, p. t. ) =F(N, p, £ z) Z=c,trace (M — N) (2. 3
for ol M > Noand (p. £ 2) ER"X R X Q
Definition 2. 2. The operator F[L + 7 is nonincreasing if
F(M, p t, ) =< F(M, p. 5, 2 (2. 4)
for al t =3 and (M, p, 2) € S(n) ¥ R* > Q. The operator F([ « 1 is decreasing if there
1 a constant o, = 0 such that
F(M, p. t, 2) —F(M, p, 3 ) <c,(s—1) (2. 5)
Jorallt>sand (M. p. 2) € S(n) X B > 0.
Definition 2. 3. The operator F[ = ] is Lipschitz in p if there is a constant ¢, = 0 such
that
F(M, p. t, 2) —F(M, q. t. ) <e,|p—q]| (2. 6)
for all (M, p. 0. £, 2) ESn) X R XR"¥XRX G0
The operator F[ » ) e uniformly confinuous in z if there is a confinuous increasing function
o (x) such that o (0) = 0 and

FM, p t. ) — (F(M, p. . ) <o(|lz—w]|) (2.7
for all (M, 9. &, 2. P ESR) X R X RX Q22X R
Definition 2. 4. w € € (L) is a viscosity supersolution of (1. 1)if
FIM, p, wiz), ) =<0 forall(p. M) € D"wiz) andall zE€ Q
(2. 8)

w = O 18 o viscosity subsolution of (1. 1) if
FIM, p. wiz), 2 =0 forall(p, M) € DTwirdandallz € G (2.9
w & € (D) is a viscosily solution of (1.1) if both (2. 8) and (2. 9) hold, where D 1w ()
and D7 w (x) denote superdifferential and subdifferential of w (x) | respectively (see(17).
Lemma 2. 5. Let 0 & € () . The Jollowing are equivalent: ;
(i) w is a mscosily supersolution of (1. 1):
(i) F (D (x)) , Dplxy), @iz, z) = 0 for oll open set G C Q2 and oll (x, @) €
G CTAE) such that w(z) Zofz) foralz € G, wlz) =@z .
The proof of Lemma 2. 5 is similar to that of Lemma 2. 15 in [1].
Lemma 2. 6. Let w & € () « The following are equivalent:
(i) w is a viscostly subsolution of (1. 1);
(it) F(D'p(z) , Doz, @z, 2) =0 for all open set G C § and all (2, @) €
GO such that w(z) <@z forallz € G, wiz) =@ (x) .
Definition 2. 7. For all e € (0, &,]) (2, iz the range in the implicit function Theorem, see
C11). we define
FECM, p. t, 2) =F (M, p. £, 2tep/ 1+ |2|5D (2. 10)
forall (M, p £, 2) E8) X R XRX Q. NHisveryclear bt FEEC(Stn) X B" W B
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