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Abstract. We study the enhancement of accuracy, by means of the convolution post-
processing technique, for discontinuous Galerkin(DG) approximations to hyperbolic

problems. Previous investigations have focused on the superconvergence obtained

by this technique for elliptic, time-dependent hyperbolic and convection-diffusion
problems. In this paper, we demonstrate that it is possible to extend this post-

processing technique to the hyperbolic problems written as the Friedrichs’ systems

by using an upwind-like DG method. We prove that the L2-error of the DG solution
is of order k+1/2, and further the post-processed DG solution is of order 2k+1 if Qk-

polynomials are used. The key element of our analysis is to derive the (2k+1)-order
negative norm error estimate. Numerical experiments are provided to illustrate the

theoretical analysis.
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1. Introduction

In this paper, we consider an upwind-like DG method for solving the hyperbolic

problem written as the Friedrichs’ systems [7],

d∑

i=1

Ai∂iu+Bu = f , in Ω, (M −Dn)u = 0, on ∂Ω, (1.1)

where Ω is a bounded domain in Rd, matrix Dn =
∑d

i=1Aini, n = (n1, · · · , nd)T is the

outward unit normal vector. Our main aim is to show that it is possible to enhance the

accuracy of this DG approximation by using the convolution post-processing technique.

This post-processing technique was originally introduced by Bramble and Schatz [1]
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using continuous finite element methods for elliptic equations and later was devel-

oped by Cockburn, Luskin, Shu and Süli [2] using the DG method for time-dependent

hyperbolic equations, and further by Ji, Xu and Ryan [9] using the LDG method for

time-dependent convection-diffusion equations. The post-processing technique is car-

ried out by a convolution operation applied to the finite element solution. The key

of this technique is to derive a superconvergence order (for example, the O(h2k+1)-
order) error estimate in the negative norm for the finite element solution. By the

post-processing, the order of error in the L2-norm can be enhanced up to the order of

error in the negative norm. Some other post-processing techniques [10,11,20,21] also

have been proposed in enhancing the accuracy of the finite element solutions, but they

do not possess such high accuracy.

DG methods for solving problem (1.1) basically can be classified as both the nu-

merical flux method and the penalty method, see [3,5,6,13,19,22] and the references

therein. In the numerical flux method, the key element is to choose the numerical trace

Dnû properly in the weak form of problem (1.1):

−
∫

K
u ·

d∑

i=1

Ai∂ivdx+

∫

K
(B −

d∑

i=1

∂iAi)u · vdx+

∫

∂K
Dnû · vds =

∫

K
f · vdx, (1.2)

where K is the element. In the traditional upwind scheme (see [8, 13, 19]), the nu-

merical trace is defined by first splitting matrix Dn =
∑
Aini into the symmetric form

Dn = A+ + A− with A+ ≥ 0 (positive semi-definite) and A− ≤ 0 (negative semi-

definite), and then setting the numerical trace Dnû|∂K = A+
u
+ + A−

u
−, where u

+

and u
− are the traces of u on ∂K from the interior and exterior of K, respectively.

In this paper, we will present an upwind-like DG scheme which is slightly different

from the traditional one. We first decompose each Ai into Ai = A+
i + A−

i , and

then define the numerical trace by setting Dnû =
∑d

i=1A
+
i niû +

∑d
i=1A

−
i niû, and

A±
i niû = A±

i niu
+(A±

i niu
−) if A±

i ni ≥ 0(A±
i ni ≤ 0). The advantage of our method

is that the splitting can be implemented only once before the triangulation is made,

while in the traditional method, since matrix Dn depends on the boundary normal vec-

tor n|∂K , then for each element K and each face FK ⊂ ∂K, we always need to split

Dn|FK
= A+ + A−. Therefor, such splitting is very consuming in practical computa-

tion. More importantly, for this DG method, we can derive the (2k + 1)-order error

estimates in the negative norm. It should be point out that Cockburn et al. in [2] (also

see [9, 14]) have established a framework to prove the negative norm error estimates

for DG methods applied to time-dependent hyperbolic problems, but their analysis is

very relied on the time-dependent structure of the problem and is not available to time-

independent hyperbolic problem (1.1). In this paper, by means of the a priori error

estimate in a mesh-dependent norm and the dual argument technique, we derive the

desired negative norm error estimate which allows us to enhance the accuracy of DG

solution from (k+1/2)-order to (2k+1)-order in the L2-norm by using the convolution

post-processing technique.

Throughout this paper, let Ω be a bounded open polyhedral domain in Rd, d ≥ 2.

For any open subset D ⊂ Ω and integersm ≥ 0, we denote byHm(D) the usual Sobolev


