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Abstract. Centroidal Voronoi tessellations (CVTs) have become a useful tool in many

applications ranging from geometric modeling, image and data analysis, and numerical

partial differential equations, to problems in physics, astrophysics, chemistry, and biol-

ogy. In this paper, we briefly review the CVT concept and a few of its generalizations and

well-known properties. We then present an overview of recent advances in both math-

ematical and computational studies and in practical applications of CVTs. Whenever

possible, we point out some outstanding issues that still need investigating.
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1. Introduction

A comprehensive study of centroidal Voronoi tessellations (CVTs) was provided in the

1999 review article [31]. While the CVT concept initially was phrased as a model and

method for optimal point distributions and spacial tessellations of regions/volumes in Rd

or within sets of discrete data, the generality and universality of CVTs have also made

them widely applicable in many fields of science and engineering. In the past decade,

CVTs and CVT-based methodologies attracted much attentions in the community. Not only

significant progress has been made in the theoretical study of the CVTs, but there also
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has been tremendous growth in the scientific and technological applications of CVTs. The

purpose of this paper is to reflect upon past progress and to point out some interesting

issues that still need to be resolved.

Given the vast literature published on the subject, it is impossible to give a complete

survey; instead, we focus on works with which we are most familiar to offer a brief and

limited overview of the recent advances in mathematical and computational studies and in

practical applications of CVTs. Needless to say, the subject of CVTs is still growing rapidly,

so we also point out some outstanding issues and future research topics that remain to be

studied.

The paper is organized as follows, in the remainder of this section, we go over the

CVT concept and a few of its basic properties. Then, in Section 2, we discuss several

generalizations of the basic CVT concept and, in Section 3, we discuss recent progress in

the development of improved, i.e., more efficient algorithms, for constructing CVTs. In

Section 4, we discuss a very few of the many and ever growing applications to which CVTs

have been put to effective use. Brief concluding remarks are given in Section 5.

1.1. The CVT concept in Rd

We first recall the definition of CVTs in Euclidean space. We begin with a given open

bounded domain Ω ∈ Rd and a set of distinct points {xi}
n
i=1
⊂ Ω. For each point xi ,

i = 1, · · · , n, define the corresponding Voronoi region Vi , i = 1, · · · , n, by

Vi =
n

x ∈ Ω | ‖x− xi‖ < ‖x− x j‖ for j = 1, · · · , n and j 6= i
o

, (1.1)

where ‖ · ‖ denotes the Euclidean distance (the L2 metric) in Rd . Clearly Vi ∩ Vj = ; for

i 6= j, and ∪n
i=1V i = Ω so that {Vi}

n
i=1 is a tessellation of Ω. We refer to {Vi}

n
i=1 as the

Voronoi tessellation (VT) of Ω [97] associated with the point set {xi}
n
i=1. A point xi is

called a generator; a subdomain Vi ⊂ Ω is referred to as the Voronoi region (or Voronoi

diagram) corresponding to the generator xi. It is well-known that the dual tessellation (in

a graph-theoretical sense) to a Voronoi tessellation of Ω is the Delaunay triangulation (DT).

Given a density function ρ(x) ≥ 0 defined on Ω, for any region V ⊂ Ω, the standard

mass center (or centroid) x∗ of V is given by

x∗ =

∫

V

xρ(x) dx

∫

V

ρ(x) dx

. (1.2)

Then a special family of Voronoi tessellations are defined as follows.

Definition 1. [31]We refer to a Voronoi tessellation {(xi, Vi)}
n
i=1

ofΩ as a centroidal Voronoi

tessellation (CVT) if and only if the points {xi}
n
i=1 which serve as the generators of the as-

sociated Voronoi regions {Vi}
n
i=1 are also the centroids of those regions, i.e., if and only if we

have that xi = x∗i for i = 1, · · · , n. The corresponding dual triangulation is called a centroidal

Voronoi Delaunay triangulation (CVDT).


