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Abstract. A convex variational formulation is proposed to solve multicomponent signal
processing problems in Hilbert spaces. The cost function consists of a separable term,
in which each component is modeled through its own potential, and of a coupling term,
in which constraints on linear transformations of the components are penalized with
smooth functionals. An algorithm with guaranteed weak convergence to a solution to
the problem is provided. Various multicomponent signal decomposition and recovery
applications are discussed.
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1. Problem statement

The processing of multicomponent signals has become increasingly important due, on
the one hand, to the development of new imaging modalities and sensing devices, and,
on the other hand, to the introduction of sophisticated mathematical models to represent
complex signals. It is for instance required in applications dealing with the recovery of
multichannel signals [8, 33, 34, 40], which arise in particular in color imaging and in the
multi- and hyperspectral imaging techniques used in astronomy and in satellite imaging.
Another important instance of multicomponent processing is found in signal decomposition
problems, e.g., [2,5–7,15,43,44]. In such problems, the ideal signal is viewed as a mixture
of elementary components that need to be identified individually.
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Mathematically, a multicomponent signal can be viewed as an m-tuple (x i)1≤i≤m, where
each component x i lies in a real Hilbert spaceHi. A generic convex variational formulation
for solving multicomponent signal recovery or decomposition problems is

minimize
x1∈H1,··· , xm∈Hm

Φ(x1, · · · , xm), (1.1)

where Φ: H1 ⊕ · · · ⊕Hm → ]−∞,+∞] is a convex cost function. At this level of gener-
ality, however, no algorithm exists to solve (1.1) reliably in the sense that it produces m
sequences (x1,n)n∈N, · · · , (xm,n)n∈N converging (weakly or strongly) to points x1, · · · , xm,
respectively, such that (x i)1≤i≤m minimizes Φ. Let us recall that, even in the elementary
case when m= 2 andH1 =H2 = R, the basic Gauss-Seidel alternating minimization algo-
rithm does not possess this property [28]. In this paper, we consider the following, more
structured version of (1.1).

Problem 1.1. Let m ≥ 2 and p ≥ 1 be integers, let (Hi)1≤i≤m and (Gk)1≤k≤p be real Hilbert
spaces, and let (τk)1≤k≤p be in ]0,+∞[. For every i ∈ {1, · · · , m}, let fi :Hi → ]−∞,+∞] be
a proper lower semicontinuous convex function and, for every k ∈ {1, · · · , p}, let ϕk : Gk→ R
be convex and differentiable with a τk-Lipschitz continuous gradient, and let Lki : Hi → Gk

be linear and bounded. It is assumed that min1≤k≤p

∑m
i=1 ‖Lki‖2 > 0. The problem is to

minimize
x1∈H1,··· , xm∈Hm

m∑

i=1

fi(x i) +

p∑

k=1

ϕk

� m∑

i=1

Lki x i

�

, (1.2)

under the assumption that solutions exist.

Let us note that (1.2) is a particular case of (1.1), in which Φ is decomposed in two
terms, namely

Φ(x1, · · · , xm) =

m∑

i=1

fi(x i)

︸ ︷︷ ︸

separable term

+

p∑

k=1

ϕk

� m∑

i=1

Lki x i

�

︸ ︷︷ ︸

coupling term

. (1.3)

Each function fi in the separable term promotes an intrinsic property of the ith component
x i of the signal. On the other hand, the coupling term models p interactions between
the m components (x i)1≤i≤m. An elementary interaction is associated with a potential ϕk

acting on a linear transformation
∑m

i=1 Lki x i of the components. The coupling is smooth
in the sense that the function ϕk is differentiable with a Lipschitz gradient. As will be
seen in subsequent sections, Problem 1.1 not only captures existing formulations for which
reliable solution methods are not available, but it also allows us to investigate a wide
range of new problems. In addition, it can be solved reliably by the following proximal
algorithm recently developed in [4] (the definition of the proximity operator prox fi

of a
convex function fi :Hi → ]−∞,+∞] is given in Section 2.2).

Algorithm 1.1. Set

β1 =
1

p max
1≤k≤p

τk

m∑

i=1

‖Lki‖2
, (1.4)


