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A UNIFORMLY OPTIMAL-ORDER ESTIMATE FOR BILINEAR

FINITE ELEMENT METHOD FOR TRANSIENT

ADVECTION-DIFFUSION EQUATIONS

QUN LIN, KAIXIN WANG, HONG WANG, AND XIAOBO YIN

Abstract. We prove an optimal-order error estimate in a weighted energy

norm for bilinear Galerkin finite element method for two-dimensional time-

dependent advection-diffusion equations by the means of integral identities or

expansions, in the sense that the generic constants in the estimates depend

only on certain Sobolev norms of the true solution but not on the scaling

parameter ε. These estimates, combined with a priori stability estimates of

the governing partial differential equations, yield an ε-uniform estimate of the

bilinear Galerkin finite element method, in which the generic constants depend

only on the Sobolev norms of the initial and right data but not on the scaling

parameter ε.
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1. Introduction

Time-dependent advection-diffusion equations, whih arise in mathematical mod-
els of petroleum reservoir simulation, environmental modeling, and other appli-
cations [3, 12], admit solutions with moving fronts and complex structures, and
present serious mathematical and numerical difficulties [9, 13]. Many numerical
methods have been developed to solve these problems and corresponding optimal-
order convergence rates were proved [1, 5, 6, 9, 13, 14, 15, 18, 24]. However, these
estimates have the major drawback that the generic constants in these estimates
depend inversely on the scaling parameter ε, and so could blow up as ε tends to
zero.

ε uniform estimates have been sought to address these issues and some progress
has been made [13]. In the context of time-dependent advection-diffusion equa-
tions, suboptimal- and optimal-order ε uniform estimates were obtained primarily
for Eulerian-Lagrangian methods [2, 19, 20, 21, 22, 23]. In essence, an ε uniform
estimate is somewhat a restatement that the estimate is independent of the Peclet
number. Eulerian-Lagrangian methods combine the advection and capacity terms
to reformulate the governing equation as a parabolic equation in the Lagrangian
coordinate to carry out the temporal discretization [6, 16, 17]. Thus, the corre-
sponding Peclet number is formally zero. This explains why ε uniform estimates
were proved only for Eulerian-Lagrangian methods, even if these methods are much
more complex to analyze.

In this paper we prove an ε-uniform optimal-order error estimate for the bilinear
Galerkin finite element method for time-dependent advection-diffuson equations,
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which, to the best knowledge of the authors, is the first work of this type. The pri-
mary advantage of Galerkin method resides in the simplicity of the implementation
of the method. Due to the use of a standard temporal discretization, the advection
term must be analyzed with care to ensure the impact of the Peclet number to be
handled properly.

The rest of this paper is organized as follows. In §2 we recall preliminary results
that are to be used in the paper. In §3 we revisit the problem formulation and
approximation properties that are to be used in the analysis. In §4 we prove ε-
uniform optimal-order error estimate for the problem. In §5 we prove auxiliary
lemmas. §6 contains concluding remarks.

2. Problem formulation and Preliminaries

We consider a time-dependent advection-diffusion equation in two space dimen-
sions

(2.1)
ut +∇ ·

(

v(x, t)u − εD(x, t)∇u
)

= f(x, t), (x, t) ∈ Ω× (0, T ]

u(x, 0) = uo(x), x ∈ Ω.

Here Ω = (a, b)×(c, d) is a rectangular domain, x = (x, y), v(x, t) = (V1(x, t), V2(x, t))
is a velocity field, f(x, t) accounts for external sources and sinks, uo(x) is a pre-

scribed initial data, D(x, t) =
(

Dij(x, t)
)2

i,j=1
is a diffusion-dispersion tensor that

has uniform lower and upper bounds 0 < Dmin|α|2 ≤ α
TD(x, t)α ≤ Dmax|α|2 <

+∞ for any α ∈ R2 and (x, t) ∈ Ω × [0, T ]. Here 0 < ε << 1 is a parameter
that scales the diffusion and characterizes the advection-dominance of Eq. (2.1),
and u(x, t) is the ε-dependent unknown function. Finally, problem (2.1) is closed
by a boundary condition. Differential types of boundary conditions are considered
in this paper, including a (homogeneous) Dirichlet boundary condition

(2.2) u(x, t) = 0, (x, t) ∈ Γ× [0, T ]

where Γ := ∂Ω is the spatial boundary of Ω as well as a noflow boundary condition
[3, 12] which describes an impermeable boundary and is characterized by v(x, t) ·
n(x) = 0. On the noflow boundary Γ a homogeneous diffusive flux boundary
condition is imposed

(2.3) −(D∇u)(x, t) · n(x) = 0, (x, t) ∈ Γ× [0, T ].

This type of boundary condition often arizes in applications such as petroleum
reservoir simulation. Finally, a periodic boundary condition is also considered in
this paper [12].

Let W k
p (Ω) consist of functions whose weak derivatives up to order-k are p-th

Lebesgue integrable in Ω, and Hk(Ω) := W k
2 (Ω). Let H1

0 (Ω) :=
{

v ∈ H1(Ω) :

v(x) = 0, x ∈ Γ
}

, and Hm
E (Ω) be the subspace of Hm(Ω), which consists of

functions that are periodic with respect to the domain Ω. We also introduce the

energy norm ‖f(·, t)‖H1

D
(Ω) :=

(∫

Ω∇f(x, t) ·D(x, t)∇f(x, t)dx
)

1

2 .


