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Abstract. In this paper we present an efficient algorithm for the calculation of pho-
tonic crystal band structures and band structures of photonic crystal waveguides. Our
method relies on the fact that the dispersion curves of the band structure are smooth
functions of the quasi-momentum in the one-dimensional Brillouin zone. We show the
derivation and computation of the group velocity, the group velocity dispersion, and
any higher derivative of the dispersion curves. These derivatives are then employed
in a Taylor expansion of the dispersion curves. We control the error of the Taylor ex-
pansion with the help of a residual estimate and introduce an adaptive scheme for the
selection of nodes in the one-dimensional Brillouin zone at which we solve the under-
lying eigenvalue problem and compute the derivatives of the dispersion curves. The
proposed algorithm is not only advantageous as it decreases the computational effort
to compute the band structure but also because it allows for the identification of cross-
ings and anti-crossings of dispersion curves, respectively. This identification is not
possible with the standard approach of solving the underlying eigenvalue problem at
a discrete set of values of the quasi-momentum without taking the mode parity into
account.

AMS subject classifications: 35Q61, 65N30, 65Z05, 78-04, 78M10

PACS: 42.70.Qs, 71.20.-b, 02.30.Jr, 02.70.Dh

Key words: Photonic crystals, band structure calculation, group velocity, Taylor expansion,
adaptivity.

1 Introduction

Photonic crystals (PhCs) are nanostructures with a periodic refractive index, where the
periodicity is in the order of the wavelength of light [19]. In general one has to distin-
guish between 1D, 2D, and 3D PhCs, where the number of the dimension stands for the
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number of axes of periodicity. In this work we shall focus on 2D PhCs whose periodicity
is usually induced by periodically spaced holes in a dielectric material, or by periodically
spaced rods of a dielectric material. A typical approximation, the so called 2D planar PhC,
of this three dimensional structure is obtained by assuming invariance along the direc-
tion of the holes and rods. Due to their ability to tailor the propagation of light, 2D PhCs
and their band structures, i. e. eigenfrequencies in dependence of the quasi-momentum,
have been studied extensively, see for example [2–4, 6, 10, 13, 15–18, 24, 26–28] and the
references therein. Of particular interest in PhC band structure calculations is the iden-
tification of frequency intervals, so called band gaps or complete band gaps, for which no
light can propagate in the PhC. These band gaps are relevant for PhC waveguides. PhC
waveguides are PhCs with a line defect, that is usually induced by omitting one (W1
PhC waveguide), two (W2 PhC waveguide), or more rows of holes/rods [19]. Inside the
band gaps there can exist modes, so called guided modes, that propagate along the line
defect while decaying exponentially in perpendicular direction.

In the design process of devices in photonics the calculation of band structures of
PhC waveguides is a key issue. The frequently used supercell method [35, 38] is a sim-
ple procedure for the approximative computation of guided modes in PhC waveguides.
While giving good results for well-confined modes (guided modes with a large decay
rate in perpendicular direction to the line defect), the supercell methods lacks accuracy
for modes that are close to the boundaries of the band gaps, the so called band edges,
since the decay rate for these modes is significantly smaller [38]. Very recently, an ap-
proach for an exact computation of guided modes in PhC waveguides was proposed that
uses Dirichlet-to-Neumann (DtN) transparent boundary conditions at the interfaces of
periodic medium and line defect [11]. A numerical realization and comparison to the su-
percell method was shown in [22]. This DtN method does not introduce any modelling
error and hence, it is also suited for guided modes close to the band edges.

A full band structure calculation, that resolves all phenomena like crossings and anti-
crossings [30, 31] of dispersion curves in full detail, is very time-consuming with either
method and there is a need for efficient yet reliable methods that provide good approxi-
mations to both, well-confined modes and modes close to the band edge. We propose in
this work a method that is based on the fact that the dispersion curves in band structures
are smooth functions and hence, a Taylor expansion of these functions is possible. We
show how to compute the first derivative of the dispersion curves, which corresponds to
the so called group velocity [5,20], the second derivative, known as group velocity dispersion,
and any higher derivative of the dispersion curves. The computation of the derivatives
relies directly on the differentiability of the underlying operator of the eigenvalue prob-
lem with respect to the quasi-momentum. In particular, we do not employ the perturba-
tion theory as done in earlier works [9,14,37], where the vector k·p approach of electronic
band structure theory is transferred to PhC band structure calculations. Our computa-
tional procedure has two main advantages: (i) it is “exact” in the way that no additional
modelling error is introduced in comparison to the perturbation approach in [9, 14, 37]
where an infinite sum for the computation of the group velocity dispersion has to be


