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Abstract. We present a new numerical method to approximate the solutions of an
Euler-Poisson model, which is inherent to astrophysical flows where gravity plays an
important role. We propose a discretization of gravity which ensures adequate cou-
pling of the Poisson and Euler equations, paying particular attention to the gravity
source term involved in the latter equations. In order to approximate this source term,
its discretization is introduced into the approximate Riemann solver used for the Eu-
ler equations. A relaxation scheme is involved and its robustness is established. The
method has been implemented in the software HERACLES [29] and several numerical
experiments involving gravitational flows for astrophysics highlight the scheme.
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1 Introduction

The present paper is devoted to the numerical approximation of the Euler equations
when gravitational effects are taken into account. The associated solutions are governed
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by an Euler-Poisson model, given by the following system of partial differential equa-
tions (PDEs):



















∂tρ+∇·(ρu)=0,

∂t (ρu)+∇·(ρu⊗u+p)=−ρ∇φ,

∂t (ρE)+∇·((ρE+p)u)=−ρu·∇φ,

∆φ=4πGρ,

(1.1)

where ρ> 0 is the density, u∈R
d the velocity, and E the specific energy. The integer d

refers to the space dimension. The thermodynamic pressure p is assumed to be governed
by an equation of state

p := p(ρ,ǫ),

where ǫ = E−|u|2/2 represents the specific internal energy. As usual (see [28, 49]), the
pressure law is assumed to satisfy

∂ρ p(ρ,ǫ)+
p(ρ,ǫ)

ρ2
∂ǫ p(ρ,ǫ)>0.

Here, G≈ 6.67×10−11m3kg−1s−2 is the gravitational constant. The gravitational po-
tential φ is always a smooth function since it is the solution of the Laplace equation. For
the sake of notation simplicity, the system is rewritten in compact form as

{

∂tW+∇·F(W)+B(W)∇φ=0,

∆φ=4πGρ,
(1.2)

with

W=(ρ,ρu,ρE)T , (1.3a)

F(W)=(ρu,ρu⊗u+p,(ρE+p)u)T , (1.3b)

B(W)=ρ







0T
d

Id

uT






, (1.3c)

where 0d =(0,··· ,0)T is the null vector in R
d and Id is an identity matrix of dimension d.

As usual, W :Rd×R
+→Ωd is the state vector and F :Ωd→R

2+d is the flux function. Here,
B :Ωd→R

2+d×R
d represents the gravitational contribution when multiplied by ∇φ. The

convex set Ωd of the admissible state vectors is defined by

Ωd=

{

W∈R
2+d; ρ>0, u∈R

d, ǫ=E− |u|2
2

>0

}

. (1.4)

System (1.2) is completed with appropriate initial and boundary conditions that de-
pend on the problem being considered, as will be seen in Section 5. Nevertheless, we


