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Abstract. This paper generalizes the exponential Runge-Kutta asymptotic preserving
(AP) method developed in [G. Dimarco and L. Pareschi, SIAM Numer. Anal., 49 (2011),
pp. 2057-2077] to compute the multi-species Boltzmann equation. Compared to the
single species Boltzmann equation that the method was originally applied on, this
set of equation presents a new difficulty that comes from the lack of local conserva-
tion laws due to the interaction between different species. Hence extra stiff nonlinear
source terms need to be treated properly to maintain the accuracy and the AP prop-
erty. The method we propose does not contain any nonlinear nonlocal implicit solver,
and can capture the hydrodynamic limit with time step and mesh size independent of
the Knudsen number. We prove the positivity and strong AP properties of the scheme,
which are verified by two numerical examples.
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1 Introduction

We are interested in developing efficient numerical methods for the nonlinear multi-
species Boltzmann equation [11]:

1
Wfito-Vafi=2Qi(f.f), t20, (x,v) ER?xR?. (1.1)
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Here f;(t,x,v) represents the distribution function of the i-th species at time t, position

x and velocity v, and f = (f1,f2,-, fN)T, d is the dimensionality and N is the number of
species. The collision term is given by

N
fl= ZQik(f/f)r (1.2a)
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1k_fi ik’ (12b)

where Bjy is the symmetric collision kernel (i.e. Bjx = By;), v and v, are pre-collisional
velocities, v’ and v/, are post-collisional velocities, f/ = f;(t,x,7") and f[. = fi(t,x,v,), wisa
unit vector, and S%~! is the unit sphere defined in R space, g =v— v, is relative velocity.
There are many variations for the collision kernel Bj. One of the simple cases is the
Maxwell molecule when B;; = Bik( 2] ) The post-collisional velocities " and v/, satisfy:

Pk f Bk
v=o—l @-lglw) vi=vt (8= glw), (1.3)
with p = Tk - being the reduced mass, and m;, my being the mass for species i and k

respectlvely Thls deduction is based on momentum and energy conservations:

miv+mo, =mo' +mdl,  milol fmlo.? =m0 P my|ol]?.
Eq. (1.1) describes the evolution of rarefied gas that has more than two components
whose particles usually have different masses. It is often used in modeling the high
altitude gas, which is usually considered as a binary mixture of Oxygen and Nitrogen,
and the environment at the reentry to the earth of spacecrafts. In (1.2b), the gaining part
is marked as Q;; and the rest is the losing part marked as f;Q;, with f; extracted out of the
integration. In (1.1), the ¢ is called the Knudsen number, indicating the ratio of mean free
path over the typical domain size. When e=O(1), the equation is in kinetic (microscopic)
regime. As ¢ — 0, one gets to fluid (macroscopic) regime with the Euler equations as the
first order approximation in Chapman-Enskog Expansion [?].

Numerical challenge comes from the time discretization due to the Knudsen number.
On the one hand, it is impractical to design an implicit method since it requires the inver-
sion of the nonlocal and nonlinear collision term. On the other hand, if explicit method
is used, the time step is limited by the smallest Knudsen number for stability reasons,
which usually leads to unaffordable computational cost.

There has been a great amount of literature on removing the numerical stiffness in
(1.1), many of which are based on domain decomposition [5, 8,9, 16,18,25-27]. The idea
is to solve (1.1) when the Knudsen number is of O(1), and to solve its Euler limit when
the Knudsen number is small. Despite its success in theory, the method encounters two
difficulties in practice: 1. It is hard to identify how small the Knudsen number should



