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Abstract. This paper describes an algorithm for ”direct numerical integra-

tion” of the initial value Differential-Algebraic Inequalities (DAI) in a time step-

ping fashion using a sequential quadratic programming (SQP) method solver for

detecting and satisfying active path constraints at each time step. The activa-

tion of a path constraint generally increases the condition number of the active

discretized differential algebraic equation’s (DAE) Jacobian and this difficulty

is addressed by a regularization property of the α method. The algorithm is

locally stable when index 1 and index 2 active path constraints and bounds are

active. Subject to available regularization it is seen to be stable for active index

3 active path constraints in the numerical examples. For the high index active

path constraints, the algorithm uses a user-selectable parameter to perturb the

smaller singular values of the Jacobian with a view to reducing the condition

number so that the simulation can proceed. The algorithm can be used as a

relatively cheaper estimation tool for trajectory and control planning and in the

context of model predictive control solutions. It can also be used to generate

initial guess values of optimization variables used as input to inequality path

constrained dynamic optimization problems. The method is illustrated with

examples from space vehicle trajectory and robot path planning.
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1. Background

Many engineering control problems, especially those with inequality path con-
straints yield Differential-Algebraic Inequalities (DAI) models. The need for solving
a DAI system arises in robotic path planning [19], safety envelope [10] and trajectory
[7] generation, in model predictive control approaches [8], and in voltage control
of electrical equipments [11]. Traditionally, a DAI is handled, almost always, in
the context of optimal control problems where the inequality path constraints in
the discretized optimal control problem are handled by the optimizer as inequal-
ity constraints at each mesh point (e.g., in Direct Transcription and collocation
schemes) or as a sub-interval wise cumulative error integral that is minimized (e.g.,
in multiple shooting schemes).

However, in certain situations the direct simulation of a DAI does arise. For
example, when interior point methods are used for dynamic optimization problems,
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the initial guess of a feasible solution involving the satisfaction of the DAI system
is needed. Intermediate level trajectory planning through constraint programming
also entails the necessity of a DAI solver [19].

Available Differential-Algebraic Equation (DAE) solvers are limited to address-
ing inequalities only in the form of positivity constraints on the states and controls
(e.g., DASPK [3]). Some DAE solvers can detect whether a constraint has become
active with root-finding techniques (e.g., DASRT [3], DASPKE [13]) and mainly
concern with DAE systems with discontinuities.

Examples of DAI integrators are few. A solver with constraint smoothing and
local planning has been described in [19]. This algorithm checks for weakly ap-
proximate safety condition of using the control values from the previous time step
and proceeds with activating a buffer zone as a path inequality constraint becomes
nearly active. A barrier function minimization is used if the safety was violated to
obtain a new set of initial guesses for the controls at that time step. Then the dy-
namics is integrated provided the states obtained satisfy the bounds and inequality
path constraints.

1.1. Introduction to the present work. At every time step a DAI integrator
must

• detect active path constraints
• determine which algebraic variables control on to the active path constraints
• handle the possible numerical row rank deficiency in the active constraints
Jacobian in the SQP method. The numerical rank deficiency may occur
due to activation of high differential index (see definition in [3] and called
the index hereafter) active path constraints and due to abrupt changes in
the active path constraint set.

The present algorithm addresses the above requirements as follows.

• A standard sequential quadratic programming (SQP) method that is used
as a solver at each time step detects the active path constraints.

• The SQP method also determines which algebraic variables control on to
the active path constraints by constructing a square basis matrix (defined
in section 3.1) which has the least condition number over available column
permutations in the active constraints Jacobian in the SQP method.

• The numerical row rank deficiency is addressed by varying a parameter
in the DAI discretization which leads to increase in the smallest singular
values (i.e., regularization) of the basis matrix.

The DAI solver finds a feasible solution locally in contrast to the Multiple Shoot-
ing method or the Direct Transcription method where the dynamic optimization
problem discretized over the entire simulation interval enters the QP iterations of
an SQP solver. The trade-off for a DAI solver is cheaper computational cost in
finding a feasible solution one time step at a time involving much smaller matrices
than the dynamic optimization.

The method is intended to be either a cheap tool for generating feasible initial
guess for the dynamic optimization problem solved by Multiple Shooting or Direct
Transcription with an interior point method, or to be a solver for rapid trajectory
planning via constraint programming at an intermediate specification level. It is
not meant to replace methods that find solutions over the entire simulation interval,
such as the Multiple Shooting or Direct Transcription methods.

The regularization property of the present algorithm is different from the exist-
ing approaches of path constraint perturbation and/or modification (such as the


