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Abstract. Many problems in biology involve gels which are mixtures composed of
a polymer network permeated by a fluid solvent (water). The two-fluid model is a
widely used approach to described gel mechanics, in which both network and solvent
coexist at each point of space and their relative abundance is described by their volume
fractions. Each phase is modeled as a continuum with its own velocity and constitu-
tive law. In some biological applications, free boundaries separate regions of gel and
regions of pure solvent, resulting in a degenerate network momentum equation where
the network volume fraction vanishes. To overcome this difficulty, we develop a reg-
ularization method to solve the two-phase gel equations when the volume fraction of
one phase goes to zero in part of the computational domain. A small and constant
network volume fraction is temporarily added throughout the domain in setting up
the discrete linear equations and the same set of equation is solved everywhere. These
equations are very poorly conditioned for small values of the regularization parame-
ter, but the multigrid-preconditioned GMRES method we use to solve them is efficient
and produces an accurate solution of these equations for the full range of relevant reg-
ularization parameter values.
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1 Introduction

An important class of gels are those composed of a polymer network and fluid solvent.
Because of their multiphase and multiscale nature, such gels can exhibit chemical stresses
in addition to viscoelastic stresses, which result in swelling and deswelling behavior.
These gels are important in many biological systems. For example, the cytoplasm of
cells contains a large amount of the protein actin. Actin forms a filamentous gel that
can actively contract with the involvement of another protein called myosin [1]. Another
important biological gel is mucus which lines the airways of the lung and the surfaces of
the stomach and intestines. It can substantially change its volume in response to changes
in its ionic environment [2–4]. A gel made of the protein fibrin forms as part of the blood
clotting process. When a blood clot forms inside a vein or artery, the fibrin gel grows
from the vascular wall into the blood plasma [5–8]. For mucus and fibrin in particular,
the gel is adjacent to a fluid in which there is no polymer.

The two-fluid model is a widely used approach to describe gel mechanics [9–16]. In
this model, both network and solvent coexist at each point of space, and each phase (net-
work and solvent) is modeled as a continuum with its own velocity field and constitutive
law. In this paper, we assume the viscous terms are dominant and inertial terms are
negligible. The system of equations describing the two-phase gel dynamics is

(θn)t+∇·(θnun)=0, (1.1)

(θs)t+∇·(θsus)=0, (1.2)

∇·(θn
σ

n)−ξθnθs(un−us)−θn∇p=∇(θnψ(θn)), (1.3)

∇·(θs
σ

s)−ξθnθs(us−un)−θs∇p=0. (1.4)

Here Eqs. (1.1) and (1.2) are continuity equations for the network and solvent, with vol-
ume fractions θn, θs, and velocities un and us, respectively, and 0≤ θn ≤1. Adding these
two equations, and using θn+θs=1 gives the incompressibility constraint

∇·(θnun+θsus)=0. (1.5)

In the force balance equations (1.3) and (1.4), σn and σs are stress tensors for the two
phases, which are governed by appropriate constitutive laws. For this paper, we assume
that both materials are Newtonian fluids, so that the stress tensors are given by

σ
n=µn

(
∇un+∇unT

)
+λnδij∇·un, (1.6)

σ
s=µs

(
∇us+∇usT

)
+λsδij∇·us. (1.7)

Here µn,s are shear viscosities and λn,s+2µn,s/d are the bulk viscosities of the network and
solvent (d is the dimension). The network and solvent are also subject to an interphase
frictional drag, which is modeled by ξθnθs(un−us), where ξ>0 is the drag coefficient. p is
the single pressure felt by both phases. The term θnψ(θn) is an additional pressure which


