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Abstract. In this article the instabilities appearing in a liquid layer are studied nu-
merically by means of the linear stability method. The fluid is confined in an annular
pool and is heated from below with a linear decreasing temperature profile from the
inner to the outer wall. The top surface is open to the atmosphere and both lateral
walls are adiabatic. Using the Rayleigh number as the only control parameter, many
kind of bifurcations appear at moderately low Prandtl numbers and depending on the
Biot number. Several regions on the Prandtl-Biot plane are identified, their boundaries
being formed from competing solutions at codimension-two bifurcation points.
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1 Introduction

The problem of thermoconvective instabilities in fluid layers driven by a temperature
gradient has become a classical subject in fluid mechanics [1,28]. Two different effects are
responsible for the onset of motion when the temperature difference becomes larger than
a certain threshold: gravity and capillary forces. When both effects are taken into account
the problem is called Bénard-Marangoni (BM) convection [1]. Classically, heat is applied
uniformly from below [1] where the conductive solution becomes unstable for increas-
ing temperature gradients. A more general set-up may be considered which includes
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thermoconvective instabilities by imposing a basic dynamic flow through non-zero hori-
zontal temperature gradients, either in rectangular geometries [3,6,10,13,15,17,21,22,28]
or in cylindrical and annular geometries [7, 8, 12, 13, 19]. In particular, references [8, 14]
and Garnier’s PhD thesis [9] include a revision of the flow configuration found in this sort
of problems. It is also worthy mentioning the experimental work of Schwabe et al. [24],
performed in low gravity conditions.

These studies are characterized by a set of dimensionless numbers:

1. Rayleigh number, Ra= gα∆Td4/κν: Representative of the buoyancy effect.

2. Marangoni number, Ma=γ∆Td2/ρκν: Accounts for the surface tension effects.

3. Prandtl number, Pr=ν/κ: The ratio of momentum diffusivity (kinematic viscosity)
to thermal diffusivity. In this article Pr values range from 1 to 20.

4. Bond number, Bo = Ra/Ma = αρd2/γ: Ratio of Rayleigh to Marangoni numbers,
which is kept constant in this article.

5. Biot Number, Bi: Accounts for heat transmission between the fluid and the atmo-
sphere. Values inside the range [0.2−1.5] are explored in this article.

6. Aspect ratio, Γ=δ/d.

Here γ stands for the rate of change of surface tension with temperature, κ is the
thermal diffusivity, ν is the kinematic viscosity of the liquid, α is the thermal expansion
coefficient, g is the gravitational acceleration, ∆T stands for a temperature increment and
δ and d are characteristic lengths to be defined later. The reference values used are similar
to those employed in [12], so that Bo∼ 70 and buoyancy effects are dominant. In this
work, Prandtl, Biot and Rayleigh numbers were supposed to be independent parameters
and their effects on the solution of the problem was carefully studied.

In recent years Shi, Peng and several collaborators have studied numerically an annu-
lar geometry, [23,25–27], with a method similar to that used in [12]. The main differences
between these works and the present article is that in those contributions the effects of the
Biot number were not considered and that the lateral walls of the annular pool were con-
ductive. Other approximations to this sort of problems have been proposed which make
use of tools coming from functional analysis, see [20] for details and references therein,
but the presence of a tangential derivative in the Marangoni condition (see next section)
makes this approximation almost impracticable.

Results on this problem were obtained in [12, 13] which evidenced the importance
of heat-related parameters in the development of the instabilities. In [14] the authors
found that very diverse bifurcations are controlled by the Biot number and compared
their solutions with the experimental results obtained by the group of Garnier [8]. The
main interest of this paper is to generalized the results of these works, removing the
infinite-Prandtl number approximation.

The paper is structured as follows. In the second section the formulation of the prob-
lem and the numerical method used to solve it are presented. Then, in the third section


