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Abstract. In this paper, we highlight the benefits resulting from imposing energy-
conserving equilibria in entropic lattice Boltzmann models for isothermal flows. The
advantages are documented through a series of numerical simulations, such as Taylor-
Green vortices, cavity flow and flow past a sphere.
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1 Introduction

In the last decade, mesoscale algorithms such as lattice Boltzmann models (LBM), Dis-
sipative Particle Dynamics (DPD) and multi-particle collision dynamics, have attracted
increasing interest in the framework of computational fluid dynamics (see, e.g., [1–15]).
This success story is remarkable from the theoretical point of view too, as continued ef-
fort in this field has succeeded in establishing the existence of a self-consistent underlying
micro-dynamics behind the mesoscopic formulation.
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For example, in the case of LBM, the importance of formulating discrete kinetic mod-
els in compliance with the H-theorem, is by now fully appreciated [3, 16–21]. In fact, an
exact lattice analog of the continuous Maxwell-Boltzmann distribution was derived from
a discrete version of the entropy maximization principle [19,20,22]. The link between dis-
crete thermodynamics and numerical stability and efficiency of the corresponding com-
putational model, is also well appreciated and possible generalizations towards more
microscopic formulations have been explored in recent works [11, 19, 23–27].

Despite the aforementioned success of these approaches, much still needs to be under-
stood, both from theoretical and numerical standpoint, such as efficient implementation
of curved boundaries, numerical stability at very low viscosity and others.

In the present manuscript, we show that releasing a specific thermodynamic defi-
ciency of the method, leads to a significant improvement in the quality of the simulation.
More precisely, in its present popular isothermal setting, sound propagation in lattice
Boltzmann [28], takes place at constant temperature, thus following Newton’s definition
of sound speed,
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where v0 is the reference thermal speed.
However, via Laplace theory, it is known that, in actual reality, sound propagation

occurs via an adiabatic process, which can only be described by an energy conserving
(EC) model. This automatically gives,
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where γ is the adiabatic exponent. Traditionally, this discrepancy was largely neglected
in isothermal LBM simulations, with an argument that the relevant observable is the
velocity field, the sound speed being just an immaterial constant. However, as we shall
show in the following, this thermodynamic aspect plays a major role in determining the
quality of simulation results even for isothermal flows in fully resolved domains. In other
words, reproducing the correct sound speed gives rise to a much more robust numerical
scheme.

The work is organized as follows. In Section 2, lattice Boltzmann model (both energy
conserving and isothermal) is briefly reviewed. In Section 3, via an example we show
that energy conserving model indeed manages to reproduce adiabatic sound propagation
correctly. In Section 4, we compare the energy conserving model with isothermal model
for the set up of Taylor-Green vortex, cavity flow and flow past a sphere. Finally, we
summarize results of the study in Section 5.

2 Lattice Boltzmann method

We briefly remind the reader that, in typical LBM formulations, one works with a set
of discrete populations f = { fi}, corresponding to predefined discrete velocities ci (i =


