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Abstract. We present an unconditionally energy stable and uniquely solvable finite
difference scheme for the Cahn-Hilliard-Brinkman (CHB) system, which is comprised
of a Cahn-Hilliard-type diffusion equation and a generalized Brinkman equation mod-
eling fluid flow. The CHB system is a generalization of the Cahn-Hilliard-Stokes model
and describes two phase very viscous flows in porous media. The scheme is based on
a convex splitting of the discrete CH energy and is semi-implicit. The equations at the
implicit time level are nonlinear, but we prove that they represent the gradient of a
strictly convex functional and are therefore uniquely solvable, regardless of time step
size. Owing to energy stability, we show that the scheme is stable in the time and space
discrete (*(0,T;H}) and ¢2(0,T; H?) norms. We also present an efficient, practical non-
linear multigrid method — comprised of a standard FAS method for the Cahn-Hilliard
part, and a method based on the Vanka smoothing strategy for the Brinkman part — for
solving these equations. In particular, we provide evidence that the solver has nearly
optimal complexity in typical situations. The solver is applied to simulate spinodal
decomposition of a viscous fluid in a porous medium, as well as to the more general
problems of buoyancy- and boundary-driven flows.
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1 Introduction

1.1 Problem definition and background

Consider the Ginzburg-Landau energy of a binary fluid with constant, uniform mass
density [5]
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where QCRP, D=2 or 3, ¢: Q) — R is the concentration field, and € is a positive constant.
The phase equilibria are represented by the pure fluids ¢ = £1. The dynamical Cahn-
Hilliard-Brinkman equations we consider are

dp=eV-(M(¢)Vu)—V-(pu), (1.2)
=V-[v(¢)D(w)]+n(¢p)u=—-Vp—1¢Vy, (1.3)
V-u=0, (1.4)

where M(¢) is a mobility that incorporates the Peclet number; i is the chemical potential

pi= 0B = (§—9) e (15)

v >0 is a surface tension parameter; u is the fluid velocity; p is a pressure; v(-) >0 is the
fluid viscosity; 77(+) >0 is the fluid permeability; and D(u) = Vu+(Vu)T.

We assume that M, v, 1 € C®, and M(x) > My >0, n7(x) >10>0, and v(x) >y >0, for
all x € R. For example, we shall frequently use a regularized degenerate mobility of the
form

1

M(cp):P—e\/(1+¢)2(1—¢)2+622Pie>0, (1.6)

where Pe > 0 is the Peclet number, which might be dependent upon €. We assume
that the system (1.2)-(1.4) is supplemented with the boundary conditions u|yn =0, and
In¢laa=0nH|sq=0. The latter conditions represent local thermodynamic equilibrium on
the boundary. With this set of boundary conditions, the system (1.2)-(1.4) is mass conser-
vative and energy dissipative, and the dissipation rate is readily found to be [8,14,15,17]
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Eq. (1.3) is a generalized Brinkman equation [2] that incorporates a diffuse interface
surface tension force. The Cahn-Hilliard-Brinkman (CHB) system (1.2)-(1.4) was recently
proposed as a model for phase separation and coarsening of a binary fluid in a Brinkman
porous medium [18]. The authors showed the existence of a logarithmically slow coars-
ening regime that arises when the phase domains are comparable to the average pore
size. The system (1.2)-(1.4) is also closely related to models of tumor growth [20, 33, 34]
which include an additional mass source for volumetric growth. When the surface ten-
sion vanishes, i.e., ¥ =0, the CHB system reduces to the Cahn-Hilliard equation [3]. A
generalized Stokes equation is obtained when # =0 in (1.3). The system (1.2)-(1.4) is a
simplified version of the model derived by Lee et al. [14,15], which they used to describe
gravity-driven, density-mismatched, two-phase flow. We remark that the CHB system



