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Abstract. In this paper we study a low frequency model for acoustic propagation in a
2D flow duct. For some Mach profile flow, we are able to give a well-posedness the-
orem. Its proof relies on a quasi-explicit expression of the solution which provides us
an efficient numerical method. We give and comment numerical results for particular
linear, tangent and quadratic profiles. Finally, we give a numerical validation of our
asymptotic model.
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1 Introduction

The present work has been motivated by applications to computational aeroacoustics,
namely the numerical modelling of the propagation of sound in a moving fluid. In this
perspective, we have chosen to reconsider the problem from a fundamental point of view
and to begin with the propagation of sound in a duct. We consider a strongly varying par-
allel flow which can be simply described with the help of a scalar function M(y) which
represents, after appropriate normalisation (it is the Mach number), the lateral variations
of the velocity of the reference flow. We shall call this function the Mach profile. For this
model problem, a quasi-1D mathematical problem has been obtained in [1] from Gal-
brun’s equations [5] (which are equivalent to the well-known linearized Euler equations)
by a formal asymptotic expansion with respect to the width of the tube (this can also be
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seen as a low frequency analysis). This model leads to the following initial value prob-
lem, where the unknown u is the limit (as the width tends to 0) of the x component of the
Lagrange displacement:











































Find u(x,y,t) : R×[−1,1]×R
+→R,
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u(x,y,0)=u0(x,y), (x,y)∈R×[−1,1],
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(1.1)

where M∈ L∞(]−1,1[) is the Mach profile and E is the following averaging operator on
L2(]−1,1[):

E : u → Eu=
1

2

∫ 1

−1
u(y)dy. (1.2)

This model is local (differential) in x, the coordinate along the axis of the tube, but non
local in y, the transversal coordinate. The paper [2] is devoted to the mathematical analy-
sis of this problem, using the Fourier transform and spectral theory. Despite its apparent
simplicity this problem has rather surprising properties. In particular, we exhibit in [2]
a necessary condition for the problem to be well-posed and it was conjectured that it
is a sufficient condition. The authors of [6] are able to show this conjecture for a class
of smooth monotonous and convex (or concave) profiles. This was done by calculat-
ing a quasi-explicit expression of the solution, using the Fourier-Laplace transform. This
present paper is devoted to the numerical computation of the solution of (1.1), hence it is
based on the two articles [2] and [6]. In Section 2, after reminding some properties of (1.1),
we give a new well-posedness theorem (2.1) based on the method used in [6]. Then we
apply this theorem to the case of a class of smooth monotonous profiles for which more
calculations can be done, to get Theorem 2.2. After that, the case of the quadratic pro-
file M(y)=1−y2 is explored, it constitutes an example of extension to non monotonous
profiles. The proof of Theorem 2.1 relies on a quasi-explicit representation of the solu-
tion which is given; this representation of the solution will provide an efficient way to
compute the solution. The numerical method is presented in Section 3 and is then illus-
trated, for smooth monotonous profiles, by the linear and tangent profiles, and for a non
monotonous profile, by the quadratic profile M(y)=1−y2. In the last section, we give a
numerical validation of our asymptotic model by comparison to a 2D Eulerian code.

At this stage of the work, our contribution remains quite academic and several steps
need to be done before asserting that this kind of approximate model is useful for the
applications.

• Because of its non-local nature, our model is not easily tractable from the numerical
point of view. However approximating the reference profile M(y) by a piecewise


