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Abstract. In this paper, we develop, analyze and test local discontinuous Galerkin
(LDG) methods for solving the Degasperis-Procesi equation which contains nonlinear
high order derivatives, and possibly discontinuous or sharp transition solutions. The
LDG method has the flexibility for arbitrary h and p adaptivity. We prove the L2 sta-
bility for general solutions. The proof of the total variation stability of the schemes
for the piecewise constant P0 case is also given. The numerical simulation results for
different types of solutions of the nonlinear Degasperis-Procesi equation are provided
to illustrate the accuracy and capability of the LDG method.
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1 Introduction

In this paper, we consider numerical approximations to the Degasperis-Procesi (DP)
equation

ut−utxx+4 f (u)x = f (u)xxx, (1.1)

where f (u)=u2/2. We develop two local discontinuous Galerkin (LDG) methods for this
nonlinear DP equation. Our proposed schemes are high order accurate, nonlinear stable
and flexible for arbitrary h and p adaptivity. The proof of the L2 stability of the schemes
are given for general solutions and total variation stability for the piecewise constant P0

case is also given. To our best knowledge, this is the first provably stable finite element
method for the DP equation.
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Degasperis and Procesi [14] studied the following family of third order dispersive
PDE conservation laws,

ut+c0ux+κuxxx−ǫ2utxx =(c1u2+c2u2
x+c3uuxx)x, (1.2)

where κ, ǫ, c0, c1, c2, and c3 are real constants. Their motivation was to answer the
question of which equations of a form similar to the Camassa-Holm (CH) equation are
integrable. Applying the method of asymptotic integrability to the family (1.2), they
found that there are only three equations that satisfy the asymptotic integrability con-
dition within this family, namely, the KdV equation (ǫ = c2 = c3 = 0), the CH equation
(c1 =−3c3/2ǫ2, c2 =c3/2) and one new equation (c1 =−2c3/2ǫ2, c2 =c3, the DP equation).
By rescaling, shifting the dependent variable and applying a Galilean boost [13], one can
find the Degasperis-Procesi equation (1.1) which has a similar form to the limiting case
of the Camassa-Holm shallow water equation.

Despite the similarities to the CH equation, we would like to point out that the DP
equation is truly different. One of the important features of the DP equation is that it has
not only peaked solutions [13], for example, u(x,t) = ce−|x−ct|, but also shock waves to
the equation [9, 24], for example

u(x,t)=− 1

t+c
sign(x)e−|x|, c>0. (1.3)

Also, these two equations have entirely different forms of conservation laws:

• Three useful conservation laws for the DP equation:

E1(u)=
∫

R
(u−uxx)dx, E2(u)=

∫

R
(u−uxx)vdx, E3(u)=

∫

R
u3dx,

where 4v−vxx =u.

• Three useful conservation laws for the CH equation:

H1(u)=
∫

R
(u−uxx)dx, H2(u)=

∫

R
(u2+u2

x)dx, H3(u)=
∫

R
(u3+uu2

x)dx.

We can see that the corresponding conservation laws of the DP equation are much weaker
than those of the CH equation. The conservation laws Ei(u) can not guarantee the bound-
edness of the slope of a wave in the L2-norm. There is no way to find conservation laws
controlling the H1-norm, which plays a very important role in studying the CH equa-
tion. Such nonlinearly dispersive partial differential equations support peakon solutions
and shock solutions. The lack of smoothness of the solution introduces more difficulty
in the numerical computation. It is a challenge to design stable and high order accurate
numerical schemes for solving this equation.

In the last ten years, a lot of analysis has been given for the DP equation. Coclite
and Karlsen proved existence and uniqueness results for entropy weak solutions belong-
ing to the class L1∩BV in [9] and uniqueness result for entropy weak solutions by re-
placing the Kruzžkov-type entropy inequalities by an Oleinik-type estimate in [10]. For


