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Abstract. We propose a new multiscale method that couples molecular dynamics sim-
ulations (MD) at the atomic scale and finite element simulations (FE) at the continuum
regime. By constructing the mass matrix and stiffness matrix dependent on coarsen-
ing of grids, we find a general form of the equations of motion for the atomic and
continuum regions. In order to improve the simulation at finite temperatures, we pro-
pose a low-pass phonon filter near the interface between the atomic and continuum
regions, which is transparent for low frequency phonons, but dampens the high fre-
quency phonons.
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1 Introduction

Multiscale modeling makes simulations at large length and time scales possible. The
concurrent multiscale methods [1–7] usually combine different physical length scales to-
gether, such as atomic scale described by interatomic potentials or by a tight binding
model and the continuum scale usually described by elastic mechanics. Such meth-
ods have made their success in the simulation of static [8–10] or quasistatic [11] prop-
erties. However, the coupling between two length scales inevitably introduces an artifi-
cial interface, and the existence of such an interface can cause the spurious reflection of
phonons [12–14]. The reflection can interfere with the dynamics in the atomic region and
thus prohibit the application of the concurrent multiscale methods to properly simulate
dynamical properties. Recently, some hybrid methods have taken a step towards in the
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treatment of dynamical processes [15] by introducing suitable boundary conditions (BC)
placed at the coupling interface, such as stadium BC [16,17], exact BC [18–20] and absorb-
ing BC [21], or perfectly matched layer (PML) [22, 23]. Such boundary conditions adopt
either a time-dependent [18] or position dependent damping term [16], with which all
waves are dampened near the interface region.

However, although the physics properties at two length scales themselves are differ-
ent, the low frequency phonons can exist in both length scale, while the high frequency
phonons can only exist in the atomic region. Meanwhile the low frequency phonon plays
a significant role in understanding the long range interaction related to mechanical defor-
mation. Hence, the boundary condition should be frequency dependent, and it should
be transparent for the phonon with the frequency as high as possible. The previously
proposed algorithms [16,18,24] dampen all phonons for the computational convenience.
Therefore it is essential to construct a realistic algorithm to couple atomic and continuum
simulations.

In this paper, an atomic-based finite element method (AFEM) is introduced, which
can be merged seamlessly with an atomistic region in order to enable energy transfer-
ring through the coupling interface. Meanwhile, we design a new damping method near
the interface to absorb the spurious reflections of high frequency, while keeping low fre-
quency phonons transparent.

2 Theoretical method and analysis

We first consider a one-dimensional (1D) model which can be spatially composed of MD
region, FE region and linking region (LR), as shown in Fig. 1. We adopt Lagrangian
mechanics to describe the MD region, which is shown without the external force as

L(u,u̇)=
1

2
u̇TMAu̇−V(u), (2.1)

where MA is diagonal mass matrix denoted by atomic mass mµ and u is discrete atomic
displacement. The MD simulation can be numerically implemented in terms of Newton’s
equation by solving Eq. (2.1).

The FE region is divided into two-node elements with different length from the lat-
tice length aµ, which is gradually scaled up to hl =nlaµ (nl =1,2,··· ,) into the macroscale,
as shown in the left part of Fig. 1. The linear basis functions are set up on the FE re-
gion which is linked with the MD systems nearby the most dense elements. Under the
Cauchy-Born rule [25], the atomic displacement u is the linear mapping of the nodal
displacement d, expressed as u = Jd, where J is Jacobi matrix of the linear interpolation
function which provides the atomic displacement within the element. Substituting this
relation into Eq. (2.1), by solving the corresponding Lagrangian equation, the equation of
motion can be written as

[M] ¨[d]=−[K][d], (2.2)


