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Abstract. We show that an enslaved phase-separation front moving with diffusive

speeds U = C/
√

T can leave alternating domains of increasing size in their wake. We
find the size and spacing of these domains is identical to Liesegang patterns. For equal
composition of the components we are able to predict the exact form of the pattern an-
alytically. To our knowledge this is the first fully analytical derivation of the Liesegang
laws. We also show that there is a critical value for C below which only two domains
are formed. Our analytical predictions are verified by numerical simulations using a
lattice Boltzmann method.
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1 Introduction to Liesegang patterns

The formation of highly ordered patterns in naturally occurring biological, chemical, and
mineralogical systems has long been a subject of intense interest. The study of such pat-
tern formation can sometimes allow deep insight into their underlying natural phenom-
ena. In a previous paper we analyzed the dynamics of pattern formation behind a one-
dimensional, slow moving (enslaved), phase-separation front. Our analysis concerned
fronts moving with constant speed, and the pattern formed was a series of alternating
bands of regular width and spacing [4]. We show here that a front moving with diffusive
speed will form a more complex Liesegang pattern.

It was with the motivation of understanding pattern formation in simple systems that,
just over one hundred years ago, R. E. Liesegang observed a highly ordered pattern of
concentric rings precipitating around a drop of silver nitrate on a glass slide with a thin
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gel coating containing potassium dichromate [8]. These concentric rings are now known
as Liesegang rings. The radial width and spacing of the rings increases with increas-
ing distance from the center. Rings close to the center are narrow and tightly packed.
Rings far from the center are wide and far apart. The pattern forms from the center out-
wards, and is stationary once visible. Several alternatives to silver nitrate and potassium
dichromate in the production of Liesegang rings have been used in the literature. In gen-
eral, some electrolytes A and B combine to form an insoluble precipitate D which then
produces Liesegang patterns. Most recent publications use linear Liesegang patterns of
bands and gaps which are produced by adding the A electrolyte to a test-tube containing
the B electrolyte suspended in gel [9].

To characterize Liesegang bands or rings, they are typically numbered from the first
formed to the last formed, the nth appearing at time tn at position xn with a width wn.
Repeated careful measurements of Liesegang patterns revealed that discrete, defect-free
bands could be characterized by a set of empirical laws [6]. They are

Time Law xn ∝
√

tn, (1.1a)

Spacing Law xn+1/xn =1+p, (1.1b)

Width Law xn ∝ wn. (1.1c)

The time law relates the position of the nth band with the time of its appearance. The
location of subsequent bands is given by the spacing law, where p>0 is the spacing coeffi-
cient. The width law states that the band width is proportional to the position of the band,
which is a natural result of the spacing law with the assumptions of mass conservation
and uniform concentration of precipitate bands [7]. These laws are only considered valid
for large n. Much attention has been paid to the phenomenological Matalon-Packter law
p=F(B0)+G(B0)/A0, which relates p to the initial concentrations A0 and B0 of the A and
B electrolytes [2]. F(B0) and G(B0) are known to be decreasing functions of B0, though
not much else about them is known. Antal et al. [2] show that the Matalon-Packter law
can be derived in limiting cases from more general expressions.

Soon after their characterization, study into the nature and cause of Liesegang pat-
terns was prolific. For instance, a paper by Stern in 1954 makes mention of more than
six hundred papers having been published on the subject by that time [10]. There were
many early attempts to develop a comprehensive model of Liesegang pattern formation.
However, it proved difficult to account for the wide variety and complexity of possible
patterns, and many early models were eliminated by additional experiments. The com-
plexity of Liesegang pattern formation thwarted theoretical understanding, and progress
slowed. More than a century later there is currently still no generally accepted compre-
hensive mechanism for Liesegang pattern formation.

Current dominating theories of Liesegang pattern formation can be categorized as
either an ion-product supersaturation theory where electrolytes combine directly into the
precipitate (A+B→D), or a nucleation and growth theory where one or more intermediate
compounds form before final precipitation (A+B→C→D). A brief discussion of these
models is given in the recent paper by Jahnke and Kantelhardt [7].


