
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 5, No. 2-4, pp. 456-468

Commun. Comput. Phys.
February 2009

A Discontinuous Galerkin Extension of the

Vertex-Centered Edge-Based Finite Volume Method

Martin Berggren1, Sven-Erik Ekström2,∗ and Jan Nordström2

1 Department of Computing Science, Umeå University, SE-901 87 Umeå Sweden.
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Abstract. The finite volume (FV) method is the dominating discretization technique
for computational fluid dynamics (CFD), particularly in the case of compressible flu-
ids. The discontinuous Galerkin (DG) method has emerged as a promising high-
accuracy alternative. The standard DG method reduces to a cell-centered FV method at
lowest order. However, many of today’s CFD codes use a vertex-centered FV method
in which the data structures are edge based. We develop a new DG method that re-
duces to the vertex-centered FV method at lowest order, and examine here the new
scheme for scalar hyperbolic problems. Numerically, the method shows optimal-order
accuracy for a smooth linear problem. By applying a basic hp-adaption strategy, the
method successfully handles shocks. We also discuss how to extend the FV edge-based
data structure to support the new scheme. In this way, it will in principle be possible to
extend an existing code employing the vertex-centered and edge-based FV discretiza-
tion to encompass higher accuracy through the new DG method.
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1 Introduction

The finite volume (FV) method is currently the most widely used approach to discretize
the equations of aerodynamics. The method balances exactly—with respect to the cho-
sen numerical flux—the discrete values of mass, momentum, and energy between each
control volume. The type of control volumes together with the choice of numerical flux
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determines which particular flavor of the FV method that is employed. Unstructured
meshes are supported naturally by these methods, which allows for the treatment of
flows around geometrically complex bodies.

The accuracy of FV methods is typically limited to first or second order. Efforts to
increase the accuracy of the basic method include the so-called high-resolution schemes
(MUSCL, ENO, WENO), which attain better flux approximations through extrapolation
from directions where the solution is smooth. These schemes modestly increase the mem-
ory requirements, but the computational complexity grows with the order, since the im-
proved accuracy relies on enlarging the width of the computational stencil. The regu-
larity requirements on the mesh are thus likely to be high in order to obtain improved
results.

A different approach to increase the accuracy is the discontinuous Galerkin (DG)
method. It is a finite element method that does not explicitly enforce continuity be-
tween the elements as in a classic finite element method, but instead imposes a coupling
between the solution at different elements with the use of numerical fluxes, as in the
FV method. The DG method reduces to a FV method at lowest order, and can thus be
viewed as a generalization of the FV method to higher orders. The increased order is
not the result of an extrapolation procedure, as in the high-resolution schemes, but stems
from a local approximation of the differential operator. The computational stencil of DG
methods thus remains local regardless of order, and the quality of approximation can be
expected not to depend as much on the mesh regularity as for the high-resolution FV
schemes. On the other hand, the computational complexity and memory requirements
increase sharply with order for the DG methods. Nevertheless, since a coarser mesh can
be used, a higher-order DG method requires considerably less degrees of freedom to at-
tain a solution with a given error bound, compared with a FV method.

There has been a strong development of the original DG method (Reed & Hill [24])
since the early nineties; Cockburn et al. [9] review the state of the art at the turn of the
century. Hesthaven and Warburton give a thorough introduction to DG methods in their
recent book [19]. Currently there is a coordinated effort in Europe, in which we par-
ticipate, through the EU research project ADIGMA [3], which involves the development
and assessment of different higher order methods such as DG and residual distribution
schemes [2, 10] for the next generation of CFD software aimed at the aeronautical indus-
try.

Since DG is a generalization of the FV method, it is tempting to extend existing FV
codes to encompass a DG method, in order to avoid a complete rewrite of large and
sophisticated software systems. A serious hurdle for such a strategy is that the standard
DG method is a higher-order version of the cell-centered FV method in which the control
volumes coincide with the mesh cells (Fig. 1a), whereas many of today’s codes are vertex-
centered where the control volumes are constructed from a dual mesh, consisting in two
dimensions of polygons surrounding each vertex in the original primal mesh (Fig. 1b).
Some examples of vertex-centered FV codes are DLR-Tau [25], Edge [12], Eugenie [15],
Fun3D [17], and Premo [26].


