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Abstract. It is demonstrated that spectral methods can be used to improve the accu-
racy of numerical solutions obtained by some lower order methods. More precisely,
we can use spectral methods to postprocess numerical solutions of initial value differ-
ential equations. After a few number of iterations (say 3 to 4), the errors can decrease
to a few orders of magnitude less. The iteration uses the Gauss-Seidel type strategy,
which gives an explicit way of postprocessing. Numerical examples for ODEs, Hamil-
tonian system and integral equations are provided. They all indicate that the spectral
processing technique can be a very useful way in improving the accuracy of the nu-
merical solutions. In particular, for a Hamiltonian system accuracy is only one of the
issues; some other conservative properties are even more important for large time sim-
ulations. The spectral postprocessing with the coarse-mesh symplectic initial guess can
not only produce high accurate approximations but can also save a significant amount
of computational time over the standard symplectic schemes.
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1 Introduction

We begin by considering a simple ordinary differential equation with given initial value:

y′(x)= g(y;x), 0< x≤T, (1.1)

y(0)=y0. (1.2)
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There have been many numerical methods for solving (1.1)-(1.2), see, e.g., [9, 10]. How-
ever, most of the existing methods have an algebraic rate of convergence, i.e., O(hα), with
α=1 for the Euler method, and α=4 for the RK4 method.

A natural question is can we obtain exponential (spectral) rate of convergence for
solving problem (1.1)-(1.2)? For boundary value problems, the answer is positive and
well known, see, e.g., [2, 4, 14]. However, for the initial value problem (1.1)-(1.2), spectral
methods are not attractive due to the following reasons: The problem (1.1)-(1.2) is a local
problem, so a global method (such as spectral method) will require larger storage (need
to store all data in a fixed interval) and computational time (need to solve a linear system
or a nonlinear system in case that F in (1.1) is nonlinear). These disadvantages makes the
use of the spectral approach for problem (1.1)-(1.2) less attractive.

The motivation of this article is to propose a spectral postprocessing technique which
uses the numerical solutions of a lower order method to serve as starting value of the
spectral methods. Then we take a few Gauss-Seidel type iterations for a well designed
spectral method. This postprocessing procedure will help us to recover the exponential
rate of convergence with little extra computational resource. In particular, there is no
need of solving a linear system or a nonlinear system in case that F in (1.1) is nonlinear.
Moreover, the method is found extremely stable for the initial value problem (1.1)-(1.2).

2 Spectral postprocessing for initial value ODEs

2.1 Spectral postprocessing for an ODE equation

Assume the size of [t0,T] is not too big; otherwise a trick in Section 2.2 will be used. In
this case, we introduce the linear coordinate transformation
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2
, −1≤ s≤1, (2.1)

and the transformations
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, G(Y;s)= g
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Then problem (1.1)-(1.2) becomes

Y′(s)=G(Y;s), −1< s≤1; (2.3)

Y(−1)=y0. (2.4)

2.1.1 Chebyshev collocation approach

Let {sj}N
j=0 be the Chebyshev-Gauss-Lobatto points: sj =cos(πj/N) ,0≤ j≤N. We project

G to the polynomial space PN :

G(Y;s)=
N

∑
j=0

G(Yj;sj)Fj(s), (2.5)


