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A THREE-STAGE OPERATOR-SPLITTING/FINITE ELEMENT
METHOD FOR THE NUMERICAL SIMULATION OF LIQUID

CRYSTAL FLOW

ROLAND GLOWINSKI, PING LIN, AND XING-BIN PAN

Abstract. In this article, we investigate the application of an operator-

splitting/finite element method to the numerical simulation of a liquid crys-

tal flow. The operator-splitting is achieved through three stages, so that each

stage is simpler and easier to deal with than the step of any un-split implicit

scheme. The first stage deals with the system coupling a Stokes equation for

velocity with an equation modeling the diffusion of the liquid crystal director

field. The second stage deals with the convection of both the velocity and di-

rector field; a wave-like equation approach is used to treat this advection part

and proves being quite efficient. Finally, the third stage deals with the nonlin-

ear terms; a (quasi) closed form solution can be derived for this stage. Overall,

with this type of splitting, the nonlinear terms in the liquid crystal model can

be treated quite easily. The results of several numerical experiments show the

good performances of the three-stage splitting method discussed in this article.
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1. Introduction

The last two decades have been witnessing a strong interest among physicists,
engineers and mathematicians for the theory and numerical modeling of liquid
crystal related phenomena, including the flow of such materials. Liquid crystals do
not show a single transition from solid to liquid, but rather a cascade of transitions
involving new phases. The classical Oseen-Frank theory suggests that the nematic
phase of liquid crystals can be described by a director field d, which minimizes
the so-called Oseen-Frank energy. The mathematical analysis and computational
results for some special cases of the Oseen-Frank model can be found in [1, 4, 5,
11, 20, 12, 2, 3, 9, 17]. In order to describe liquid crystal flows we need not only
the orientation, as represented by the director field d, but also the velocity field u.
Ericksen and Leslie were able to derive a hydrodynamic model for nematic liquid
crystals: a nematic flow behaves like a regular liquid with molecules of similar size.
However, such a liquid displays anisotropic properties due to the molecule alignment
described by the local director field d. In order to facilitate the mathematical
understanding of the Ericksen-Leslie theory, F. H. Lin and Liu proposed in [13] to
consider a simplified model retaining most of mathematical and physical significance
of the original model, but simple enough to make possible a rigorous mathematical
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discussion. The model reads as follows:

ut + (u·∇)u− ν∇ ·D(u) +∇p+ λ∇ ·
(
(∇d)T∇d

)
= 0 in Ω× (0, T ),(1)

∇ · u = 0 in Ω× (0, T ),(2)
dt + (u · ∇)d− γ (∆d− f(d)) = 0 in Ω× (0, T )(3)

where in (1)-(3): (i) Ω (⊂ Rd) denotes the flow region and (0, T ) the time interval
during which the flow is taking place. (ii) u represents the flow velocity and p the
associated pressure. (iii) d represents the orientation of the liquid crystal molecules.
(iv) D(u) = (1/2)

(
∇u + (∇u)T

)
and (∇d)ij = ∂di

∂xj
. (v) f(d) = (1/ε2)(|d|2 − 1)d.

The vector-valued functions u and d (resp., the real valued function p) are defined
over Ω × (0, T ) and take their values in Rd (resp., R). For our computations
we will consider only test problems with d = 2. Concerning f(·), it is a penalty
operator, used to enforce (approximately) the condition |d| = 1 (where |d| denotes
the canonical Euclidian norm of d; actually, f(d) is the differential at d of the
penalty functional F defined by

F (d) = (1/4ε2)(|d|2 − 1)2.

The condition |d| = 1 follows from the fact that the liquid crystal molecules are of
similar size. Equation (1) describes the conservation of the linear momentum; it
combines terms describing the flow of an isotropic fluid with an additional nonlinear
term which is anisotropic. The second equation models the incompressibility of the
liquid crystal material. The third equation is associated with the conservation of
the angular momentum.

Of course, (1)-(3) have to be completed by initial and boundary conditions, such
as:

(4) u|t=0 = u0, d|t=0 = d0, u|∂Ω = u0|∂Ω = gu, d|∂Ω = gd.

Even if the initial velocity is zero, the evolution of the director field may induce
a velocity, which in turn will affect the evolution of the director field. Since the
mathematical study of these interactions (between u and d) is difficult, their nu-
merical study is a most natural alternative. In [18] (resp., [19]), Liu & Walkington
used an energy preserving C1-conforming finite element method (resp., mixed fi-
nite element method) for the solution of problem (1)-(4). In [16], Lin & Liu further
simplified the space approximations discussed in [18, 19] by deriving an energy pre-
serving C0-conforming finite element method. Some other methods have been used
for the space approximation of (1)-(4); for example, the spectral method discussed
in [6] appear to be efficient on rectangular domains when u and d verify periodic
boundary conditions.

Considering the good results presented in [9], by the authors of the present
article, for a simplified Oseen-Frank liquid crystal model, we would like to apply
to the solution of problem (1)-(4) a variation of the operator-splitting scheme we
employed in the above reference. As shown in, e.g., [8], the operator-splitting
methodology provides quite often simple and efficient methods for the solution of
complicated partial differential equations. In the particular case of problems such
as (1)-(4), an appropriate operator-splitting time discretization scheme will allow
us to treat rather easily the contribution of the nonlinear operator f(·), through the
solution of simple cubic equations in one variable, reducing thus considerably the
associated computational time compared to an implicit un-split time discretization
scheme. In this article we are going to discuss a three-stage time-splitting scheme for
the solution of problem (1)-(4); this scheme will have the ’nice’ properties mentioned


