
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 4, No. 4, pp. 911-928

Commun. Comput. Phys.
October 2008

The Method of Fundamental Solutions for

Steady-State Heat Conduction in Nonlinear Materials

A. Karageorghis1,∗ and D. Lesnic2

1 Department of Mathematics and Statistics, University of Cyprus, 1678 Nicosia, Cyprus.
2 Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK.

Received 19 October 2007; Accepted (in revised version) 21 February 2008

Available online 29 May 2008

Abstract. The steady-state heat conduction in heat conductors with temperature de-
pendent thermal conductivity and mixed boundary conditions involving radiation is
investigated using the method of fundamental solutions. Various computational issues
related to the method are addressed and numerical results are presented and discussed
for problems in two and three dimensions.
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1 Introduction

Two-dimensional boundary value problems of heat conduction in nonlinear materials
and nonlinear boundary conditions have been investigated using the boundary element
method (BEM) by Bialecki and Nowak [3] and Ingham et al. [12]. However, the imple-
mentation of the BEM becomes rather tedious for problems in three-dimensional irreg-
ular domains. Moreover, the evaluation of the gradient of the temperature solution on
the boundary requires the use of finite differences or the evaluation of hypersingular
integrals. In order to alleviate some of these difficulties, this paper proposes the use
of the method of fundamental solutions (MFS), a meshless Trefftz-type method which
is considerably easier to implement. The advantages of the MFS over the finite differ-
ence method (FDM), the finite element method (FEM), and the BEM for solving elliptic
boundary value problems, especially in higher-dimensions where no discretization of the
solution domain, or its boundary, is necessary, are well-documented, see for example the
survey papers [6, 7, 10].
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The MFS was first applied to potential flow problems by Johnston and Fairweather
[13] and has since been applied to a large variety of physical problems. In this work, we
shall employ the same idea of expressing the solution of the Laplace equation as a linear
combination of fundamental solutions with singularities located outside the domain of
the problem under consideration. In [14], Karageorghis and Fairweather used the MFS
for solving linear material problems with nonlinear radiative boundary conditions. The
purpose of this study is to extend this analysis to nonlinear material problems in two and
three dimensions.

The mathematical formulation of the problem is given in Section 2 and the MFS de-
scription in Section 3. In the previous study of Karageorghis and Fairweather [14], the
gradient of the nonlinear least-squares objective function which is minimized was cal-
culated internally by default using ’blind’ finite differences. Thus with perturbing the
parameters one at a time, the Jacobian matrix is recalculated at every iteration. There-
fore, the finite-difference approach for calculating the gradient has a high computational
cost, see Rus and Gallego [25]. In order to save on the computational time the Jacobian
matrix is calculated analytically. Numerical results are compared with the BEM results of
Bialecki and Nowak [3] for two test examples in Section 4. Moreover, a three-dimensional
example is considered, apparently, for the first time. Finally, comments and conclusions
are presented in Section 5.

2 Mathematical formulation

We consider a simply-connected bounded domain Ω⊂R
d, d≥2, with piecewise smooth

boundary ∂Ω and assume that this boundary is composed of three disjoint parts Γ1, Γ2

and Γ3. On each part Γi,i=1,2,3 boundary conditions of the first (Dirichlet), second (Neu-
mann) and third (Robin) kind, respectively, hold. The mathematical problem governing
steady-state heat conduction is given by, see [3],

∇·(k(T)∇T)=0 in Ω, (2.1)

subject to the boundary conditions

T = f on Γ1, (2.2a)
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∂T

∂n
= g on Γ2, (2.2b)
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s

]

=q on Γ3, (2.2c)

where T is the temperature solution, k is the thermal conductivity, n is the unit outward
normal vector to the boundary ∂Ω, f is a prescribed temperature on the boundary Γ1, g
is a prescribed heat flux on the boundary Γ2 and q is a given function on the boundary Γ3

which is usually taken to be zero. Also, h is the convective heat transfer coefficient, Tf is


