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Abstract. The main obstacle in sequential multiscale modeling is the pre-computation
of the constitutive relation which often involves many independent variables. The con-
stitutive relation of a polymeric fluid is a function of six variables, even after making
the simplifying assumption that stress depends only on the rate of strain. Precom-
puting such a function is usually considered too expensive. Consequently the value
of sequential multiscale modeling is often limited to “parameter passing”. Here we
demonstrate that sparse representations can be used to drastically reduce the compu-
tational cost for precomputing functions of many variables. This strategy dramatically
increases the efficiency of sequential multiscale modeling, making it very competitive
in many situations.

AMS subject classifications: 65705, 35Q30, 35Q72

Key words: Multiscale modeling, sparse grids.

In recent years, multiscale modeling has attracted a great deal of attention across a
wide spectrum of disciplines in science and engineering [1-4]. This has opened up the
possibility of analyzing the macroscopic behavior of a system based on first principles, by
linking together macroscopic and microscopic models, bypassing the necessity of making
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ad hoc modeling assumptions such as the ones that underly the empirical constitutive re-
lations in continuum mechanics. In broad terms, such multiscale methodologies can be
divided into two categories, sequential coupling methods and concurrent coupling meth-
ods [1,4]. In the sequential strategy, the needed model input for the macroscale model
is computed from microscale models beforehand. One then has an effectively closed
macroscale model which can be used for analytical or computational purposes. Such a
strategy has a very long history. It is a standard practice to obtain the transport coeffi-
cients of fluids such as viscosity or diffusion coefficients from kinetic theory or molecular
dynamics simulations. Other examples of sequential coupling include calibrating em-
pirical atomistic potentials used in molecular dynamics using models from quantum me-
chanics, determining the rates used in Monte Carlo simulation using molecular dynamics
or quantum mechanics models, computing the equation of state for gases using kinetic
theory, etc. However, for a long time, this procedure has been limited to the passage of
a few parameters, due to the fact that the computational cost associated with computing
the full constitutive relation is often too expensive. For example, the constitutive relations
for fluids in general depend on at least six variables, and precomputing a function of six
variables is simply too expensive. Therefore, one has to make a priori assumption about
the functional form of the constitutive relation, and microscale models are then used to
determine a few parameters in the functional form. The assumed functional form is often
quite ad hoc, and this has been the main drawback for sequential modeling.

The philosophy of concurrent coupling is to access such information “on-the-fly” as
the computation proceeds. The advantage of such a concurrent strategy is quite clear:
Even though the needed constitutive relation may depend on many variables, in any
particular simulation, one does not need to know the constitutive relation within the
full range of these variables — only the values that actually occur in the simulation are
needed, and these might be a very small subset of the entire range. The best example for
illustrating the advantage of such a concurrent approach is the Car-Parrinello molecular
dynamics in which the needed constitutive relation is the atomic potential. This function
may depend on the coordinates of all the atoms in the system, which can easily be a
function of tens of thousands of variables. However, in any particular simulation, one
does not need to know this function entirely, but only the values needed for the particular
sequence of atomic configurations that occur in the simulation, and this is a tiny subset of
the tens of thousands dimensional space [5]. A very informative discussion of the relative
merits of sequential and concurrent coupling strategies can be found in [1].

However, whenever possible, it is still advantageous to have the constitutive rela-
tions precomputed, since this information can be used for many other purposes, such
as analyzing the properties of the system. Knowing the constitutive relations of a fluid
helps us to understand the nature of the macroscopic response of the fluid, whether it is
shear thinning or shear thickening, for example. The main purpose of the present paper
is to demonstrate that the sequential coupling strategy can be made much more pow-
erful through the use of sparse representation. For example, instead of representing the
functions on tensor-product grids, one can use sparse grids and this drastically decreases



