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A RESIDUAL A POSTERIORI ERROR ESTIMATOR FOR
ELASTO-VISCOPLASTICITY

JOSÉ R. FERNÁNDEZ AND PATRICK HILD

Abstract. The numerical approximation of an elasto-viscoplastic problem is considered in this
paper. Fully discrete approximations are obtained by using the finite element method to approx-
imate the spatial variable and the forward Euler scheme to discretize time derivatives. We first
recall an a priori estimate result from which the linear convergence of the algorithm is derived
under suitable regularity conditions. Then, an a posteriori error analysis is provided. Upper and
lower error bounds are obtained.
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1. Introduction

Elasto-viscoplastic materials are very common in the real life because some types
of rocks and metals can be modelled using a rate-type viscoplastic law. As noticed
in [9], these materials allow both creep and relaxation phenomena.

In this work, we will consider a semilinear elasto-viscoplastic constitutive law
introduced in [5] and already studied, from both mathematical and numerical point
of views, by Ionescu and Sofonea (see the monograph [9] and the references cited
therein). In particular, fully discrete approximations were considered in [6], where
a priori estimates were obtained for an explicit Euler scheme. In this paper, this
problem is revisited and a posteriori error analysis is performed in the study of that
elasto-viscoplastic problem. This is done extending some arguments already applied
in the study of the heat equation (see, e.g., [10, 11, 13]), some parabolic equations
([1]) or the Stokes equation ([2]). Recently, contact problems involving this kind of
materials were studied (see the monograph [7] and the numerous references cited
therein), and this work can be seen as a first step to deal with this interesting kind
of contact problems (see [8] for an early study in the linear elasticity case).

The paper is structured as follows. In Section 2, the mechanical model and
its variational formulation are described following the notation and assumptions
introduced in [7]. Then, fully discrete approximations are provided in Section 3,
by using the finite element method to approximate the spatial variable and the
forward Euler scheme to discretize the time derivatives. In Section 4, an a priori
error analysis obtained in [6] is recalled. Finally, using some results obtained in
the study of the heat equation, an a posteriori error analysis is done in Section 5,
providing an upper bound for the error, Theorem 5.1, and a lower bound, Theorem
5.2.
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2. Mechanical problem and its variational formulation

In this section, we present a brief description of the elasto-viscoplastic model
(details can be found in [5, 9]).

Let Ω ⊂ Rd, d = 1, 2, 3, denote a domain occupied by an elasto-viscoplastic
body with a smooth boundary Γ = ∂Ω decomposed into two disjoint parts ΓD and
ΓF such that meas (ΓD) > 0. Moreover, let [0, T ], T > 0, be the time interval of
interest and denote by ν the unit outer normal vector to Γ.

Let x ∈ Ω and t ∈ [0, T ] be the spatial and time variables, respectively, and, in
order to simplify the writing, we do not indicate the dependence of the functions
on x and t. Moreover, a dot above a variable represents the derivative with respect
to the time variable.

Let us denote by u = (ui)d
i=1, σ = (σij)d

i,j=1 and ε(u) = (εij(u))d
i,j=1 the

displacement field, the stress tensor and the linearized strain tensor, respectively.
We recall that

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

The body is assumed elasto-viscoplastic and satisfying the following rate-type semi-
linear constitutive law (see [5, 9]),

(1) σ̇ = Eε(u̇) + G(σ, ε(u)),

where E and G denote the fourth-order elastic tensor and the viscoplastic function,
respectively.

We turn now to describe the boundary conditions.
On the boundary part ΓD we assume that the body is clamped and thus the

displacement field vanishes there (and so u = 0 on ΓD × (0, T )). Moreover, we
assume that a density of traction forces, denoted by fF , acts on the boundary part
ΓF ; i.e.

σν = fF on ΓF × (0, T ).
Denote by Sd the space of second order symmetric tensors on Rd and by “·” and

| · | the inner product and the Euclidean norms on Rd and Sd.
The mechanical problem of the quasistatic deformation of an elasto-viscoplastic

body is then written as follows.
Problem P. Find a displacement field u : Ω × (0, T ) → Rd and a stress field

σ : Ω× (0, T ) → Sd such that,

σ̇ = Eε(u̇) + G(σ, ε(u)) in Ω× (0, T ),(2)
−Divσ = f0 in Ω× (0, T ),(3)
u = 0 on ΓD × (0, T ),(4)
σν = fF on ΓF × (0, T ),(5)
u(0) = u0, σ(0) = σ0 in Ω.(6)

Here, u0 and σ0 represent initial conditions for the displacement field and the
stress tensor, respectively, and f0 denotes the density of body forces. Moreover, we
notice that equilibrium equation (3) does not include the acceleration term because
the problem is assumed quasistatic.

In order to obtain the variational formulation of Problem P, let H = [L2(Ω)]d

and we define the following variational spaces:

V = {w ∈ [H1(Ω)]d ; w = 0 on ΓD},
Q = {τ = (τij)d

i,j=1 ∈ [L2(Ω)]d×d ; τij = τji, i, j = 1, . . . , d}.
The following assumptions are required on the problem data.


