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CONVERGENCE ANALYSIS OF A SPLITTING METHOD
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Abstract. In this paper, we propose a fully drift-implicit splitting numeri-

cal scheme for the stochastic differential equations driven by the standard d-

dimensional Brownian motion. We prove that its strong convergence rate is of

the same order as the standard Euler-Maruyama method. Some numerical ex-

periments are also carried out to demonstrate this property. This scheme allows

us to use the latest information inside each iteration in the Euler-Maruyama

method so that better approximate solutions could be obtained than the stan-

dard approach.
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1. Introduction

Let us consider the following stochastic differential equations (SDEs)

(1)
{

dy(t) = f(y(t))dt + g(y(t))dW (t), 0 ≤ t ≤ T
y(0) = y0

where T > 0 is the terminal time, y(t) : [0, T ]× Ω → Rm, f(y) : Rm → Rm, g(y) :
Rm → Rm×d, and W (t) = (W1(t), · · · ,Wd(t))∗ is a standard d-dimensional Brown-
ian motion defined on a complete, filtered probability space (Ω,F , P, {Ft}0≤t≤T ).
Stochastic differential equations are used in many fields, such as stock market, finan-
cial mathematics, stochastic controls, dynamic system, biological science, chemical
reactive kinetics and hydrology, and so on. Thus, it is of importance to study the
solution of SDEs. However, it is often very difficult or impossible to find the analytic
solutions of SDEs, as a consequence, numerical methods for finding approximate
solutions of SDEs have attracted much attentions.

There have been a lot of publications in which numerical methods for stochas-
tic differential equations and their applications were studied and discussed. For
instance, the Itô-Taylor type method proposed in [11] that makes use of the so-
called Itô Taylor expansion to discretize the SDEs; the linearization type methods
suggested in [3, 12, 17], that first linearize the drift and diffusion coefficients of the
SDEs and then solve the pruned linear SDEs instead; the Runge-Kutta type meth-
ods [4,5,16,20], in which the Runge-Kutta methods for solving ordinary differential
equations are extended to solve the SDEs. Concerning the stability of the methods,
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some implicit discretization schemes were proposed in [6, 7] to stablize the numer-
ical discretization. In order to improve the accuracy of the approximate solution,
some high-order numerical methods for solving SDEs were studied in [1,4,5,10,11]
and some splitting methods were also studied in [2].

The Euler-Maruyama (E-M) method is so far the most studied numerical method
for solving SDEs and its strong convergence rate is 1/2 for general cases. Due to
its easy implementation, the E-M method and its modified versions have been very
commonly used for applied stochastic problems, such as stochastic optimal control
and stochastic partial differential equations. Since SDEs are often driven by a high-
dimensional Brownian motion and coupled with other type stochastic problems [9],
more efficient and accurate solvers for high-dimensional SDEs are urgently needed.
In the past decades, the operator splitting scheme has been extensively studied and
becomes one of the most popular and efficient ways to deal with multi-dimensional
problems which are modeled by the deterministic ordinary or partial differential
equations. In fact, the same idea also can be applied to the SDEs. In this paper,
we will propose a new splitting scheme for numerical solutions of the SDEs (1), and
show that the resulted approximate solution converges to the analytic solution of the
SDEs with the same convergence rate as the one the E-M method has. Furthermore,
this scheme allows us to use the latest information inside each iteration in the E-M
method so that better approximate solutions could be obtained than the standard
approach especially when d is large.

We organize this paper as follows. In Section 2, we first propose a fully drift-
implicit splitting scheme for the discretization of the SDEs (1), then we prove the
strong convergence of this scheme in Section 3. After presenting some computa-
tional experiments in Section 4, conclusions are given in Section 5.

2. A fully drift-implicit splitting scheme of SDEs

Let us rewrite the stochastic differential equations (1) in the following form:

(2)
{

dy(t) = f(y(t))dt +
∑d

i=1 gi(y(t))dWi(t) , 0 < t ≤ T
y(0) = y0,

where Wi(t), i = 1, 2, · · · , d are independent one-dimensional Brownian motions
and gi : Rm → Rm, i = 1, 2, · · · , d.

It is well-known that the problem (2) is equivalent to the following Itô integral
equation

(3) y(t) = y0 +
∫ t

0

f(y(s))ds +
d∑

i=1

∫ t

0

gi(y(s))dWi(s).

To discretize the equation (2), we first partition the time interval [0, T ] by

(4) 0 = t0 < t1 < · · · < tN−1 < tN = T.

Let ∆tn = tn+1 − tn denote the discrete time step at the time tn, and set ∆t =
maxN−1

n=0 ∆tn. For the simplicity of description, we only discuss the case of uniform
time partition, but all results obtained in this paper still remain valid for general
partition (4).

From the equation (3), we have exactly

(5) y(tn+1) = y(tn) +
∫ tn+1

tn

f(y(s))ds +
d∑

i=1

∫ tn+1

tn

gi(y(s))dWi(s).


