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Abstract. In this paper, we apply a recently proposed thermal axisymmetric lat-
tice Boltzmann model to the thermocapillary driven flow in a cylindrical container.
The temperature profiles and isothermal lines at the free surface with Prandtl (Pr)
number fixed at 0.01 and Marangoni (Ma) number varying from 10 to 500 are mea-
sured and compared with the previous numerical results. In addition, we also give
the numerical results for different Ma numbers at Pr=1.0. It is shown that present
results greed well with those reported in previous studies.
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1 Introduction

Surface tension gradient at a free surface could induce a viscous driving flow [1–3].
This phenomena (usually called thermocapillary convection) is often encountered in
many industrial processes. The subject of thermocapillary convection has been an
interesting area for the science and engineering due to its complex flow filed and
practical applications such as crystal growth melts and the convective flows in the
microgravity environment.

In some special cases, e.g., thermocapillary convection in an axisymmetric con-
figuration, such flows can be regarded as a quasi-two-dimensional problems. Many
traditional methods such as finite difference method, finite volume method, vorticity-
stream method, SIMPLE method have been applied to this field. It should be men-
tioned that, in the last two decades, lattice Boltzmann equation (LBE) has been rapidly
developed as an effective and promising numerical algorithm for computational fluid
dynamics [4–6], which has also been applied to axisymmetric flows [7–12].

Thermocapillary flow induced by the temperature gradient in the rectangular cav-
ity has been widely studied by traditional methods and LBE. However, to the authors’
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acknowledge, there are many attempts to apply the traditional methods to the ther-
mocapillary flow in an axisymmetric cylindrical cavity, but it’s quite rare for LBE.
Therefore, in present paper, we will apply a recent thermal axisymmetric model [11]
to the thermocapillary driven flow in a cylindrical container by a motionless surface
with constant wall temperature and straight, undeformable lateral free surface bound-
ary with a steady heat flux. Numerical simulations have been conducted at different
Pr and Ma numbers and the numerical results indicate that present results agree well
with other existing work [1].

The outline of the paper is as follows: in Section 2 we give a brief description of
the physical problem. In Section 3 the axisymmetric thermal LBE model is introduced.
Then we demonstrate some numerical simulations to validate the results in Section 4
and the conclusions are drawn in Section 5.

2 Physical problem description
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Figure 1: Sketch of the cylinder flow.

The physical configuration in Fig. 1 is axisymmetric, limited by motionless surface
with constant wall temperature. The lateral boundary is the free surface which is
taken to be straight and undeformable. The ratio of the radius and the height is fixed
at 1/2, the gravity force and the azimuthal velocity is ignored in this case. Under
these conditions, the liquid motion and temperature distribution for this problem are
governed by the following dimensionless equations
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