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Abstract. The paper introduces the gas-kinetic scheme for three-dimensional (3D)
flow simulation. First, under a unified coordinate transformation, the 3D gas-
kinetic BGK equation is transformed into a computational space with arbitrary
mesh moving velocity. Second, based on the Chapman-Enskog expansion of the
kinetic equation, a local solution of gas distribution function is constructed and
used in a finite volume scheme. As a result, a Navier-Stokes flow solver is devel-
oped for the low speed flow computation with dynamical mesh movement. Several
test cases are used to validate the 3D gas-kinetic method. The first example is a 3D
cavity flow with up-moving boundary at Reynolds number 3200, where the peri-
odic solutions are compared with the experimental measurements. Then, the flow
evolution inside a rotating 3D cavity is simulated with the moving mesh method,
where the solution differences between 2D and 3D simulation are explicitly pre-
sented. Finally, the scheme is applied to the falling plate study, where the unsteady
plate tumbling motion inside water tank has been studied and compared with the
experimental measurements.
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1 Introduction

There are two different coordinate system for description of fluid motion: the Eule-
rian one describes fluid motion at fixed locations, and the Lagrangian one follows
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fluid elements. Considerable progress has been made over the past two decades on
developing computational fluid dynamics (CFD) methods based on the above two
coordinates system. As the unsteady flow calculations with moving boundaries and
interfaces become important, such as found in the flutter simulation of wings, turbo-
machinery blades, and multiphase flow, the development of fast and reliable methods
for dynamically deforming computational domain is required [16].

There are many moving mesh methods in the literature. One example is the static
mesh movement method, where the new mesh is generated at each time step accord-
ing to certain monitor function and the flow variables are interpolated into the newly
generated mesh. Then, the flow update through the cell interface fluxes is done on a
static mesh. In order to increase the accuracy, the mesh can be properly adapted [5,8].
Another example is the dynamical one, where the mesh is moving according to cer-
tain velocity. At the same time, the fluid variables are updated inside each moving
control volume within a time step. The second method is mostly used to track the
interface location [14], to account for changes in the interface topology, and to resolve
small-scale structure at singular point. The most famous one for this dynamical mesh
moving method is the Lagrangian method. Through the research in the past decades,
it has been well recognized that the Lagrangian method is always associated with the
mesh tangling once the fluid velocity is used as the mesh moving velocity. In order to
avoid severe mesh distortion in the Lagrangian method, many techniques have been
developed. The widely used one at present time is the Arbitrary Lagrangian-Eulerian
(ALE) technique, which uses continuous re-zoning and re-mapping from Lagrangian
to the Eulerian grid. This process requires interpolations of geometry and flow vari-
ables once the computational grid is getting too distorted [13].

Recently, a successful moving mesh method for inviscid Euler equations has been
developed by Hui et al. on the target of crisp capturing of slip line [9]. In this uni-
fied coordinate method, with a prescribed grid velocity, the inviscid flow equations
are written in a conservative form in the computational domain (λ, ξ, η), as well as
the geometric conservation laws which control the mesh deformation. The most dis-
tinguishable merit in the unified coordinate method [9] is that the fluid equations and
geometric evolution equations are written in a combined system, which is different
from the fluid equations alone [5, 10]. Furthermore, due to the coupling of the fluid
and geometric system, for the first time the multidimensional Lagrangian gas dynamic
equations have been written in a conservative form. As a consequence, theoretically it
has been shown that the multidimensional Lagrangian system is only weakly hyper-
bolic. The distinguishable achievement of the unified coordinate method is that the
numerical diffusion across the slip line can be reduced to a minimum level with the
crisp capturing of contact discontinuity. However, in the complicated flow movement,
in order to avoid the severe mesh distortion, the constraints, such as keeping mesh or-
thogonality and grid angles, have to be used in the unified coordinate system. As
a result, in most cases, the constraint automatically enforces the mesh velocity being
zero, such as in the case of gas implosion inside a square. Otherwise, for flow prob-
lems with circulations, any mesh movement method, once the grid speed is coupled


