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Abstract. The boundary particle method (BPM) is a truly boundary-only colloca-
tion scheme, whose basis function is the high-order nonsingular general solution
or singular fundamental solution, based on the recursive composite multiple reci-
procity method (RC-MRM). The RC-MRM employs the high-order composite dif-
ferential operator to solve a much wider variety of inhomogeneous problems with
boundary-only collocation nodes while significantly reducing computational cost
via a recursive algorithm. In this study, we simulate the Kirchhoff plate bending
problems by the BPM based on the RC-MRM. Numerical results show that this
approach produces accurate solutions of plates subjected to various loadings with
boundary-only discretization.
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1 Introduction

In recent decades, the boundary-type meshfree methods, such as method of funda-
mental solution (MFS) [1–3], boundary knot method (BKM) [4], boundary colloca-
tion method (BCM) [5], regularized meshless method (RMM) [6, 7] and boundary
node method (BNM) [8, 9], have attracted a lot of attention in the numerical solution
of various partial differential equations. All the above-mentioned boundary meth-
ods can solve homogeneous problems with boundary-only discretization. However,
these methods require inner nodes in conjunction with the other techniques to handle
inhomogeneous problems, such as quasi-Monte-Carlo method [10], dual reciprocity
method (DRM) [11] and multiple reciprocity method (MRM) [12].
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Since 1980s the DRM and MRM have been emerging as the two most promising
techniques to handle inhomogeneous problems in conjunction with the boundary type
methods [11–13]. The striking advantage of the MRM over the DRM is that it does not
require using inner nodes at all for the particular solution. To take advantage of truly
boundary-only merit of the MRM, Chen [14, 15] developed the MRM-based meshfree
boundary particle method (BPM). However, the standard MRM is computationally ex-
pensive in the construction of the interpolation matrix and has limited feasibility for
general inhomogeneous problems due to its use of high-order Laplacian operators in
the annihilation process [12]. Chen and Jin [16, 17] presented the recursive composite
multiple reciprocity method (RC-MRM), which employs the high-order composite dif-
ferential operators to vanish the inhomogeneous term of various types. The RC-MRM
significantly expands the application territory of the BPM to a much wider variety of
inhomogeneous problems. In addition, the RC-MRM includes a recursive algorithm
to dramatically reduce the total computing cost.

This paper is organized as follows. Section 2 introduces the BPM based on RC-
MRM through its discretization to the Kirchhoff plate bending problems. The effi-
ciency and utility of this new technique are numerically examined in Section 3. Section
4 concludes this paper with some remarks and opening issues.

2 RC-MRM based BPM for plate bending

Without lose of generality, this section introduces the BPM through its discretization
to the Kirchhoff plate problems.

2.1 Plate bending

The deflection of a thin plate under a distributed loading is governed by the governing
equation

∇4w =
q
D

, (2.1)

where w is the deflection of the middle surface of plate, ∇4 denotes the biharmonic
operator, and D=Eh3/

(
12(1− ν2)

)
represents the flexural rigidity.

At every boundary point, the two boundary conditions have to be satisfied, which
are a combination of the following conditions: displacement, normal slope, bending
moment, and effective shear force. In this study, the following three types of boundary
conditions are encountered: (1) Clamped edge, denoted by C in this paper: w=0, θn=0,
where w and θn denote the displacement and normal slope condition, respectively. (2)
Simply supported edge, denoted by S in this paper: w=0, Mn=0, where Mn represents
the bending moment condition. (3) Free edge, denoted by F in this paper: Mn=0,
Vn=0, where Vn expresses the effective shear force.

The above boundary conditions can be expressed in terms of the deflection w as
follows.


