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Abstract. In this paper, we apply the discontinuous Galerkin method with Lax-
Wendroff type time discretizations (LWDG) using the weighted essentially non-
oscillatory (WENO) limiter to solve a multi-class traffic flow model for an inho-
mogeneous highway. This model is a kind of hyperbolic conservation law with
spatially varying fluxes. The numerical scheme is based on a modified equivalent
system which is written as a ”standard” hyperbolic conservation form. Numerical
experiments for both the Riemann problem and the traffic signal control problem
are presented to show the effectiveness of the method.
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1 Introduction

The first discontinuous Galerkin (DG) method was introduced in 1973 by Reed and
Hill [18], in the framework of neutron transport (steady state linear hyperbolic equa-
tions). A major development of the DG method was carried out by Cockburn et al.
in a series of papers [2–6], in which a framework was established to solve nonlinear
hyperbolic conservation laws:

{
ut +∇ · f (u) = 0,
u(x, 0) = u0(x).

(1.1)

They proposed to use an explicit, nonlinear stable and high order Runge-Kutta time
discretizations [19] and DG discretization in space with exact or approximate Rie-
mann solvers as interface flux and limiters such as the total variation bounded (TVB)
limiters [20] or weighted essential non-oscillatory (WENO) type limiters [15, 16] to
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achieve nonoscillatory properties for strong shocks. The method is termed as Runge-
Kutta discontinuous Galerkin method (RKDG). The DG method has following advan-
tages: Easy handling of complicated geometry and boundary conditions (common to
all finite element methods), allowing hanging nodes in the mesh; Compact, communi-
cation only with immediate neighbors, regardless of the order of the scheme; Explicit,
because of the discontinuous basis, the mass matrix is local to the cell, resulting in
explicit time stepping (no systems to solve); Parallel efficiency, achieves 99% parallel
efficiency for static mesh and over 80% parallel efficiency for dynamic load balancing
with adaptive meshes [1].

An alternative approach to discretize the time derivative term could be using a
Lax-Wendroff type time discretization procedure, which is also called the Taylor type
referring to a Taylor expansion in time. This approach is based on the idea of the clas-
sical Lax-Wendroff scheme [11], and it relies on converting all the time derivatives in
a temporal Taylor expansion into spatial derivatives by repeatedly using the PDE and
its differentiated versions. The spatial derivatives are then discretized by the DG ap-
proximations. The Lax-Wendroff type time discretization, which is also referred to as
the Taylor-Galerkin method for the finite element methods, usually produces the same
high order accuracy with a smaller effective stencil than that of the Runge-Kutta time
discretization, and it uses more extensively the original PDE. Since the Lax-Wendroff
time discretization is an one step method instead of the multi-step Runge-Kutta time
discretization, the LWDG method can save a certain amount of computational cost
over the RKDG method, thus is more cost effective.

Lighthill and Whitham [13] and Richards [17] independently proposed a simple
continuum model, known as the LWR model, to describe the characteristics of traffic
flow. In this model, a traffic stream model (relationship between traffic state variables
of flow, speed and density, e.g., [10]) is supplemented by the continuity equation of
vehicles, and the resulting partial differential equation presumably could be solved
to obtain the density as a function of space and time. Although aiming at providing
a coarse representation of traffic behavior, the LWR model is capable of reproducing
qualitatively a remarkable amount of real traffic phenomena such as shock formation.
However, there are still some puzzling traffic phenomena that this simple LWR model
cannot address or explain, such as the two-capacity or reverse-λ state in the funda-
mental diagram, hysteresis of traffic flow and platoon dispersion.

Recently, multi-class models (MCLWR models) have been developed in an attempt
to explain these puzzling traffic phenomena by modeling users’ lane changing behav-
ior and multiple vehicle types [7, 8]. Although the MCLWR model is simple in na-
ture, it was found that the model is capable of producing the desired properties of a
macroscopic traffic flow model and it explains many puzzling phenomena mentioned
before. In [23], the MCLWR model was solved by a first-order Lax-Friedrichs finite dif-
ference scheme. However, this scheme may produce smeared solutions near disconti-
nuities due to excessive numerical viscosity. Then Lebacque [12] successfully applied
the Godunov scheme, introduced by Godunov [9], to solve the LWR model. It is sub-
ject to smaller numerical viscosity, but requires a Riemann solver as its building block,


